12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import fluid
- from ppdet.core.workspace import register
- from ppdet.modeling.ops import BBoxAssigner, MaskAssigner
- __all__ = [
- 'BBoxAssigner',
- 'MaskAssigner',
- 'CascadeBBoxAssigner',
- ]
- @register
- class CascadeBBoxAssigner(object):
- __shared__ = ['num_classes']
- def __init__(self,
- batch_size_per_im=512,
- fg_fraction=.25,
- fg_thresh=[0.5, 0.6, 0.7],
- bg_thresh_hi=[0.5, 0.6, 0.7],
- bg_thresh_lo=[0., 0., 0.],
- bbox_reg_weights=[10, 20, 30],
- shuffle_before_sample=True,
- num_classes=81,
- class_aware=False):
- super(CascadeBBoxAssigner, self).__init__()
- self.batch_size_per_im = batch_size_per_im
- self.fg_fraction = fg_fraction
- self.fg_thresh = fg_thresh
- self.bg_thresh_hi = bg_thresh_hi
- self.bg_thresh_lo = bg_thresh_lo
- self.bbox_reg_weights = bbox_reg_weights
- self.class_nums = num_classes
- self.use_random = shuffle_before_sample
- self.class_aware = class_aware
- def __call__(self, input_rois, feed_vars, curr_stage, max_overlap=None):
- curr_bbox_reg_w = [
- 1. / self.bbox_reg_weights[curr_stage],
- 1. / self.bbox_reg_weights[curr_stage],
- 2. / self.bbox_reg_weights[curr_stage],
- 2. / self.bbox_reg_weights[curr_stage],
- ]
- outs = fluid.layers.generate_proposal_labels(
- rpn_rois=input_rois,
- gt_classes=feed_vars['gt_class'],
- is_crowd=feed_vars['is_crowd'],
- gt_boxes=feed_vars['gt_bbox'],
- im_info=feed_vars['im_info'],
- batch_size_per_im=self.batch_size_per_im,
- fg_thresh=self.fg_thresh[curr_stage],
- bg_thresh_hi=self.bg_thresh_hi[curr_stage],
- bg_thresh_lo=self.bg_thresh_lo[curr_stage],
- bbox_reg_weights=curr_bbox_reg_w,
- use_random=self.use_random,
- class_nums=self.class_nums if self.class_aware else 2,
- is_cls_agnostic=not self.class_aware,
- is_cascade_rcnn=True
- if curr_stage > 0 and not self.class_aware else False,
- max_overlap=max_overlap,
- return_max_overlap=True)
- return outs
|