MaochengHu 576cda45b8 first commit | 2 years ago | |
---|---|---|
.. | ||
README.md | 2 years ago | |
test_client.py | 2 years ago |
PaddleDetection
训练出来的模型可以使用Serving 部署在服务端。
本教程以在路标数据集roadsign_voc 使用configs/yolov3_mobilenet_v1_roadsign.yml
算法训练的模型进行部署。
预训练模型权重文件为yolov3_mobilenet_v1_roadsign.pdparams 。
python tools/infer.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_roadsign.pdparams --infer_img=demo/road554.png
# 安装 paddle-serving-client
pip install paddle-serving-client -i https://mirror.baidu.com/pypi/simple
# 安装 paddle-serving-server
pip install paddle-serving-server -i https://mirror.baidu.com/pypi/simple
# 安装 paddle-serving-server-gpu
pip install paddle-serving-server-gpu -i https://mirror.baidu.com/pypi/simple
PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:导出模型
python tools/export_serving_model.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_roadsign.pdparams --output_dir=./inference_model
以上命令会在./inference_model文件夹下生成一个yolov3_mobilenet_v1_roadsign
文件夹:
inference_model
│ ├── yolov3_mobilenet_v1_roadsign
│ │ ├── infer_cfg.yml
│ │ ├── serving_client
│ │ │ ├── serving_client_conf.prototxt
│ │ │ ├── serving_client_conf.stream.prototxt
│ │ ├── serving_server
│ │ │ ├── conv1_bn_mean
│ │ │ ├── conv1_bn_offset
│ │ │ ├── conv1_bn_scale
│ │ │ ├── ...
serving_client
文件夹下serving_client_conf.prototxt
详细说明了模型输入输出信息
serving_client_conf.prototxt
文件内容为:
feed_var {
name: "image"
alias_name: "image"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 608
shape: 608
}
feed_var {
name: "im_size"
alias_name: "im_size"
is_lod_tensor: false
feed_type: 2
shape: 2
}
fetch_var {
name: "multiclass_nms_0.tmp_0"
alias_name: "multiclass_nms_0.tmp_0"
is_lod_tensor: true
fetch_type: 1
shape: -1
}
cd inference_model/yolov3_mobilenet_v1_roadsign/
# GPU
python -m paddle_serving_server_gpu.serve --model serving_server --port 9393 --gpu_ids 0
# CPU
python -m paddle_serving_server.serve --model serving_server --port 9393
准备label_list.txt
文件
# 进入到导出模型文件夹
cd inference_model/yolov3_mobilenet_v1_roadsign/
# 将数据集对应的label_list.txt文件拷贝到当前文件夹下
cp ../../dataset/roadsign_voc/label_list.txt .
设置prototxt
文件路径为serving_client/serving_client_conf.prototxt
。
设置fetch
为fetch=["multiclass_nms_0.tmp_0"])
测试
# 进入目录
cd inference_model/yolov3_mobilenet_v1_roadsign/
# 测试代码 test_client.py 会自动创建output文件夹,并在output下生成`bbox.json`和`road554.png`两个文件
python ../../deploy/serving/test_client.py ../../demo/road554.png