123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <fstream>
- #include <iostream>
- #include <vector>
- #include <chrono>
- #include <numeric>
- #include "opencv2/core.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/imgproc.hpp"
- #include "paddle_api.h" // NOLINT
- using namespace paddle::lite_api; // NOLINT
- using namespace std;
- struct Object {
- cv::Rect rec;
- int class_id;
- float prob;
- };
- // Object for storing all preprocessed data
- struct ImageBlob {
- // image width and height
- std::vector<int> im_shape_;
- // Buffer for image data after preprocessing
- const float* im_data_;
- std::vector<float> mean_;
- std::vector<float> scale_;
- };
- void PrintBenchmarkLog(std::vector<double> det_time,
- std::map<std::string, std::string> config,
- int img_num) {
- std::cout << "----------------- Config info ------------------" << std::endl;
- std::cout << "runtime_device: armv8" << std::endl;
- std::cout << "precision: " << config.at("precision") << std::endl;
- std::cout << "num_threads: " << config.at("num_threads") << std::endl;
- std::cout << "---------------- Data info ---------------------" << std::endl;
- std::cout << "batch_size: " << 1 << std::endl;
- std::cout << "---------------- Model info --------------------" << std::endl;
- std::cout << "Model_name: " << config.at("model_file") << std::endl;
- std::cout << "---------------- Perf info ---------------------" << std::endl;
- std::cout << "Total number of predicted data: " << img_num
- << " and total time spent(s): "
- << std::accumulate(det_time.begin(), det_time.end(), 0) << std::endl;
- std::cout << "preproce_time(ms): " << det_time[0] / img_num
- << ", inference_time(ms): " << det_time[1] / img_num
- << ", postprocess_time(ms): " << det_time[2] << std::endl;
- }
- std::vector<std::string> LoadLabels(const std::string &path) {
- std::ifstream file;
- std::vector<std::string> labels;
- file.open(path);
- while (file) {
- std::string line;
- std::getline(file, line);
- std::string::size_type pos = line.find(" ");
- if (pos != std::string::npos) {
- line = line.substr(pos);
- }
- labels.push_back(line);
- }
- file.clear();
- file.close();
- return labels;
- }
- std::vector<std::string> ReadDict(std::string path) {
- std::ifstream in(path);
- std::string filename;
- std::string line;
- std::vector<std::string> m_vec;
- if (in) {
- while (getline(in, line)) {
- m_vec.push_back(line);
- }
- } else {
- std::cout << "no such file" << std::endl;
- }
- return m_vec;
- }
- std::vector<std::string> split(const std::string &str,
- const std::string &delim) {
- std::vector<std::string> res;
- if ("" == str)
- return res;
- char *strs = new char[str.length() + 1];
- std::strcpy(strs, str.c_str());
- char *d = new char[delim.length() + 1];
- std::strcpy(d, delim.c_str());
- char *p = std::strtok(strs, d);
- while (p) {
- string s = p;
- res.push_back(s);
- p = std::strtok(NULL, d);
- }
- return res;
- }
- std::map<std::string, std::string> LoadConfigTxt(std::string config_path) {
- auto config = ReadDict(config_path);
- std::map<std::string, std::string> dict;
- for (int i = 0; i < config.size(); i++) {
- std::vector<std::string> res = split(config[i], " ");
- dict[res[0]] = res[1];
- }
- return dict;
- }
- void PrintConfig(const std::map<std::string, std::string> &config) {
- std::cout << "=======PaddleDetection lite demo config======" << std::endl;
- for (auto iter = config.begin(); iter != config.end(); iter++) {
- std::cout << iter->first << " : " << iter->second << std::endl;
- }
- std::cout << "===End of PaddleDetection lite demo config===" << std::endl;
- }
- // fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
- void neon_mean_scale(const float* din,
- float* dout,
- int size,
- const std::vector<float> mean,
- const std::vector<float> scale) {
- if (mean.size() != 3 || scale.size() != 3) {
- std::cerr << "[ERROR] mean or scale size must equal to 3\n";
- exit(1);
- }
- float32x4_t vmean0 = vdupq_n_f32(mean[0]);
- float32x4_t vmean1 = vdupq_n_f32(mean[1]);
- float32x4_t vmean2 = vdupq_n_f32(mean[2]);
- float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]);
- float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]);
- float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]);
- float* dout_c0 = dout;
- float* dout_c1 = dout + size;
- float* dout_c2 = dout + size * 2;
- int i = 0;
- for (; i < size - 3; i += 4) {
- float32x4x3_t vin3 = vld3q_f32(din);
- float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
- float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
- float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
- float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
- float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
- float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
- vst1q_f32(dout_c0, vs0);
- vst1q_f32(dout_c1, vs1);
- vst1q_f32(dout_c2, vs2);
- din += 12;
- dout_c0 += 4;
- dout_c1 += 4;
- dout_c2 += 4;
- }
- for (; i < size; i++) {
- *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
- *(dout_c0++) = (*(din++) - mean[1]) * scale[1];
- *(dout_c0++) = (*(din++) - mean[2]) * scale[2];
- }
- }
- std::vector<Object> visualize_result(
- const float* data,
- int count,
- float thresh,
- cv::Mat& image,
- const std::vector<std::string> &class_names) {
- if (data == nullptr) {
- std::cerr << "[ERROR] data can not be nullptr\n";
- exit(1);
- }
- std::vector<Object> rect_out;
- for (int iw = 0; iw < count; iw++) {
- int oriw = image.cols;
- int orih = image.rows;
- if (data[1] > thresh) {
- Object obj;
- int x = static_cast<int>(data[2]);
- int y = static_cast<int>(data[3]);
- int w = static_cast<int>(data[4] - data[2] + 1);
- int h = static_cast<int>(data[5] - data[3] + 1);
- cv::Rect rec_clip =
- cv::Rect(x, y, w, h) & cv::Rect(0, 0, image.cols, image.rows);
- obj.class_id = static_cast<int>(data[0]);
- obj.prob = data[1];
- obj.rec = rec_clip;
- if (w > 0 && h > 0 && obj.prob <= 1) {
- rect_out.push_back(obj);
- cv::rectangle(image, rec_clip, cv::Scalar(0, 0, 255), 1, cv::LINE_AA);
- std::string str_prob = std::to_string(obj.prob);
- std::string text = std::string(class_names[obj.class_id]) + ": " +
- str_prob.substr(0, str_prob.find(".") + 4);
- int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
- double font_scale = 1.f;
- int thickness = 1;
- cv::Size text_size =
- cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
- float new_font_scale = w * 0.5 * font_scale / text_size.width;
- text_size = cv::getTextSize(
- text, font_face, new_font_scale, thickness, nullptr);
- cv::Point origin;
- origin.x = x + 3;
- origin.y = y + text_size.height + 3;
- cv::putText(image,
- text,
- origin,
- font_face,
- new_font_scale,
- cv::Scalar(0, 255, 255),
- thickness,
- cv::LINE_AA);
- std::cout << "detection, image size: " << image.cols << ", "
- << image.rows
- << ", detect object: " << class_names[obj.class_id]
- << ", score: " << obj.prob << ", location: x=" << x
- << ", y=" << y << ", width=" << w << ", height=" << h
- << std::endl;
- }
- }
- data += 6;
- }
- return rect_out;
- }
- // Load Model and create model predictor
- std::shared_ptr<PaddlePredictor> LoadModel(std::string model_file,
- int num_theads) {
- MobileConfig config;
- config.set_threads(num_theads);
- config.set_model_from_file(model_file);
- std::shared_ptr<PaddlePredictor> predictor =
- CreatePaddlePredictor<MobileConfig>(config);
- return predictor;
- }
- ImageBlob prepare_imgdata(const cv::Mat& img,
- std::map<std::string,
- std::string> config) {
- ImageBlob img_data;
- std::vector<int> target_size_;
- std::vector<std::string> size_str = split(config.at("Resize"), ",");
- transform(size_str.begin(), size_str.end(), back_inserter(target_size_),
- [](std::string const& s){return stoi(s);});
- int width = target_size_[0];
- int height = target_size_[1];
- img_data.im_shape_ = {
- static_cast<int>(target_size_[0]),
- static_cast<int>(target_size_[1])
- };
- std::vector<float> mean_;
- std::vector<float> scale_;
- std::vector<std::string> mean_str = split(config.at("mean"), ",");
- std::vector<std::string> std_str = split(config.at("std"), ",");
- transform(mean_str.begin(), mean_str.end(), back_inserter(mean_),
- [](std::string const& s){return stof(s);});
- transform(std_str.begin(), std_str.end(), back_inserter(scale_),
- [](std::string const& s){return stof(s);});
- img_data.mean_ = mean_;
- img_data.scale_ = scale_;
- return img_data;
- }
- void preprocess(const cv::Mat& img, const ImageBlob img_data, float* data) {
- cv::Mat rgb_img;
- cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB);
- cv::resize(
- rgb_img, rgb_img, cv::Size(img_data.im_shape_[0],img_data.im_shape_[1]),
- 0.f, 0.f, cv::INTER_CUBIC);
- cv::Mat imgf;
- rgb_img.convertTo(imgf, CV_32FC3, 1 / 255.f);
- const float* dimg = reinterpret_cast<const float*>(imgf.data);
- neon_mean_scale(
- dimg, data, int(img_data.im_shape_[0] * img_data.im_shape_[1]),
- img_data.mean_, img_data.scale_);
- }
- void RunModel(std::map<std::string, std::string> config,
- std::string img_path,
- const int repeats,
- std::vector<double>* times) {
- std::string model_file = config.at("model_file");
- std::string label_path = config.at("label_path");
- // Load Labels
- std::vector<std::string> class_names = LoadLabels(label_path);
- auto predictor = LoadModel(model_file, stoi(config.at("num_threads")));
- cv::Mat img = imread(img_path, cv::IMREAD_COLOR);
- auto img_data = prepare_imgdata(img, config);
- auto preprocess_start = std::chrono::steady_clock::now();
- // 1. Prepare input data from image
- // input 0
- std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
- input_tensor0->Resize({1, 3, img_data.im_shape_[0], img_data.im_shape_[1]});
- auto* data0 = input_tensor0->mutable_data<float>();
- preprocess(img, img_data, data0);
- // input1
- std::unique_ptr<Tensor> input_tensor1(std::move(predictor->GetInput(1)));
- input_tensor1->Resize({1, 2});
- auto* data1 = input_tensor1->mutable_data<int>();
- data1[0] = img_data.im_shape_[0];
- data1[1] = img_data.im_shape_[1];
- auto preprocess_end = std::chrono::steady_clock::now();
- // 2. Run predictor
- // warm up
- for (int i = 0; i < repeats / 2; i++)
- {
- predictor->Run();
- }
- auto inference_start = std::chrono::steady_clock::now();
- for (int i = 0; i < repeats; i++)
- {
- predictor->Run();
- }
- auto inference_end = std::chrono::steady_clock::now();
- // 3. Get output and post process
- auto postprocess_start = std::chrono::steady_clock::now();
- std::unique_ptr<const Tensor> output_tensor(
- std::move(predictor->GetOutput(0)));
- const float* outptr = output_tensor->data<float>();
- auto shape_out = output_tensor->shape();
- int64_t cnt = 1;
- for (auto& i : shape_out) {
- cnt *= i;
- }
- auto rec_out = visualize_result(
- outptr, static_cast<int>(cnt / 6), 0.5f, img, class_names);
- std::string result_name =
- img_path.substr(0, img_path.find(".")) + "_result.jpg";
- cv::imwrite(result_name, img);
- auto postprocess_end = std::chrono::steady_clock::now();
- std::chrono::duration<float> prep_diff = preprocess_end - preprocess_start;
- times->push_back(double(prep_diff.count() * 1000));
- std::chrono::duration<float> infer_diff = inference_end - inference_start;
- times->push_back(double(infer_diff.count() / repeats * 1000));
- std::chrono::duration<float> post_diff = postprocess_end - postprocess_start;
- times->push_back(double(post_diff.count() * 1000));
- }
- int main(int argc, char** argv) {
- if (argc < 3) {
- std::cerr << "[ERROR] usage: " << argv[0] << " config_path image_path\n";
- exit(1);
- }
- std::string config_path = argv[1];
- std::string img_path = argv[2];
- // load config
- auto config = LoadConfigTxt(config_path);
- PrintConfig(config);
- bool enable_benchmark = bool(stoi(config.at("enable_benchmark")));
- int repeats = enable_benchmark ? 50 : 1;
- std::vector<double> det_times;
- RunModel(config, img_path, repeats, &det_times);
- PrintBenchmarkLog(det_times, config, 1);
- return 0;
- }
|