yolov3_mobilenet_v3.yml 1.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. architecture: YOLOv3
  2. use_gpu: true
  3. max_iters: 500000
  4. log_iter: 20
  5. save_dir: output
  6. snapshot_iter: 10000
  7. metric: COCO
  8. pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar
  9. weights: output/yolov3_mobilenet_v3/model_final
  10. num_classes: 80
  11. use_fine_grained_loss: false
  12. YOLOv3:
  13. backbone: MobileNetV3
  14. yolo_head: YOLOv3Head
  15. MobileNetV3:
  16. norm_type: sync_bn
  17. norm_decay: 0.
  18. model_name: large
  19. scale: 1.
  20. extra_block_filters: []
  21. feature_maps: [1, 2, 3, 4, 6]
  22. YOLOv3Head:
  23. anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  24. anchors: [[10, 13], [16, 30], [33, 23],
  25. [30, 61], [62, 45], [59, 119],
  26. [116, 90], [156, 198], [373, 326]]
  27. norm_decay: 0.
  28. yolo_loss: YOLOv3Loss
  29. nms:
  30. background_label: -1
  31. keep_top_k: 100
  32. nms_threshold: 0.45
  33. nms_top_k: 1000
  34. normalized: false
  35. score_threshold: 0.01
  36. YOLOv3Loss:
  37. ignore_thresh: 0.7
  38. label_smooth: false
  39. LearningRate:
  40. base_lr: 0.001
  41. schedulers:
  42. - !PiecewiseDecay
  43. gamma: 0.1
  44. milestones:
  45. - 400000
  46. - 450000
  47. - !LinearWarmup
  48. start_factor: 0.
  49. steps: 4000
  50. OptimizerBuilder:
  51. optimizer:
  52. momentum: 0.9
  53. type: Momentum
  54. regularizer:
  55. factor: 0.0005
  56. type: L2
  57. _READER_: 'yolov3_reader.yml'