12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import collections
- import numpy as np
- __all__ = ['SmoothedValue', 'TrainingStats']
- class SmoothedValue(object):
- """Track a series of values and provide access to smoothed values over a
- window or the global series average.
- """
- def __init__(self, window_size=20, fmt=None):
- if fmt is None:
- fmt = "{median:.4f} ({avg:.4f})"
- self.deque = collections.deque(maxlen=window_size)
- self.fmt = fmt
- self.total = 0.
- self.count = 0
- def update(self, value, n=1):
- self.deque.append(value)
- self.count += n
- self.total += value * n
- @property
- def median(self):
- return np.median(self.deque)
- @property
- def avg(self):
- return np.mean(self.deque)
- @property
- def max(self):
- return np.max(self.deque)
- @property
- def value(self):
- return self.deque[-1]
- @property
- def global_avg(self):
- return self.total / self.count
- def __str__(self):
- return self.fmt.format(
- median=self.median, avg=self.avg, max=self.max, value=self.value)
- class TrainingStats(object):
- def __init__(self, window_size, delimiter=' '):
- self.meters = None
- self.window_size = window_size
- self.delimiter = delimiter
- def update(self, stats):
- if self.meters is None:
- self.meters = {
- k: SmoothedValue(self.window_size)
- for k in stats.keys()
- }
- for k, v in self.meters.items():
- v.update(stats[k].numpy())
- def get(self, extras=None):
- stats = collections.OrderedDict()
- if extras:
- for k, v in extras.items():
- stats[k] = v
- for k, v in self.meters.items():
- stats[k] = format(v.median, '.6f')
- return stats
- def log(self, extras=None):
- d = self.get(extras)
- strs = []
- for k, v in d.items():
- strs.append("{}: {}".format(k, str(v)))
- return self.delimiter.join(strs)
|