123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register
- from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly
- from ppdet.modeling.layers import TTFBox
- from .transformers import bbox_cxcywh_to_xyxy
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- __all__ = [
- 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess',
- 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess',
- 'DETRBBoxPostProcess', 'SparsePostProcess'
- ]
- @register
- class BBoxPostProcess(object):
- __shared__ = ['num_classes', 'export_onnx']
- __inject__ = ['decode', 'nms']
- def __init__(self, num_classes=80, decode=None, nms=None,
- export_onnx=False):
- super(BBoxPostProcess, self).__init__()
- self.num_classes = num_classes
- self.decode = decode
- self.nms = nms
- self.export_onnx = export_onnx
- def __call__(self, head_out, rois, im_shape, scale_factor):
- """
- Decode the bbox and do NMS if needed.
- Args:
- head_out (tuple): bbox_pred and cls_prob of bbox_head output.
- rois (tuple): roi and rois_num of rpn_head output.
- im_shape (Tensor): The shape of the input image.
- scale_factor (Tensor): The scale factor of the input image.
- export_onnx (bool): whether export model to onnx
- Returns:
- bbox_pred (Tensor): The output prediction with shape [N, 6], including
- labels, scores and bboxes. The size of bboxes are corresponding
- to the input image, the bboxes may be used in other branch.
- bbox_num (Tensor): The number of prediction boxes of each batch with
- shape [1], and is N.
- """
- if self.nms is not None:
- bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
- bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
- else:
- bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
- scale_factor)
- if self.export_onnx:
- # add fake box after postprocess when exporting onnx
- fake_bboxes = paddle.to_tensor(
- np.array(
- [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
- bbox_pred = paddle.concat([bbox_pred, fake_bboxes])
- bbox_num = bbox_num + 1
- return bbox_pred, bbox_num
- def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
- """
- Rescale, clip and filter the bbox from the output of NMS to
- get final prediction.
- Notes:
- Currently only support bs = 1.
- Args:
- bboxes (Tensor): The output bboxes with shape [N, 6] after decode
- and NMS, including labels, scores and bboxes.
- bbox_num (Tensor): The number of prediction boxes of each batch with
- shape [1], and is N.
- im_shape (Tensor): The shape of the input image.
- scale_factor (Tensor): The scale factor of the input image.
- Returns:
- pred_result (Tensor): The final prediction results with shape [N, 6]
- including labels, scores and bboxes.
- """
- if not self.export_onnx:
- bboxes_list = []
- bbox_num_list = []
- id_start = 0
- fake_bboxes = paddle.to_tensor(
- np.array(
- [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
- fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
- # add fake bbox when output is empty for each batch
- for i in range(bbox_num.shape[0]):
- if bbox_num[i] == 0:
- bboxes_i = fake_bboxes
- bbox_num_i = fake_bbox_num
- else:
- bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
- bbox_num_i = bbox_num[i]
- id_start += bbox_num[i]
- bboxes_list.append(bboxes_i)
- bbox_num_list.append(bbox_num_i)
- bboxes = paddle.concat(bboxes_list)
- bbox_num = paddle.concat(bbox_num_list)
- origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
- if not self.export_onnx:
- origin_shape_list = []
- scale_factor_list = []
- # scale_factor: scale_y, scale_x
- for i in range(bbox_num.shape[0]):
- expand_shape = paddle.expand(origin_shape[i:i + 1, :],
- [bbox_num[i], 2])
- scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
- scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
- expand_scale = paddle.expand(scale, [bbox_num[i], 4])
- origin_shape_list.append(expand_shape)
- scale_factor_list.append(expand_scale)
- self.origin_shape_list = paddle.concat(origin_shape_list)
- scale_factor_list = paddle.concat(scale_factor_list)
- else:
- # simplify the computation for bs=1 when exporting onnx
- scale_y, scale_x = scale_factor[0][0], scale_factor[0][1]
- scale = paddle.concat(
- [scale_x, scale_y, scale_x, scale_y]).unsqueeze(0)
- self.origin_shape_list = paddle.expand(origin_shape,
- [bbox_num[0], 2])
- scale_factor_list = paddle.expand(scale, [bbox_num[0], 4])
- # bboxes: [N, 6], label, score, bbox
- pred_label = bboxes[:, 0:1]
- pred_score = bboxes[:, 1:2]
- pred_bbox = bboxes[:, 2:]
- # rescale bbox to original image
- scaled_bbox = pred_bbox / scale_factor_list
- origin_h = self.origin_shape_list[:, 0]
- origin_w = self.origin_shape_list[:, 1]
- zeros = paddle.zeros_like(origin_h)
- # clip bbox to [0, original_size]
- x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
- y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
- x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
- y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
- pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
- # filter empty bbox
- keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
- keep_mask = paddle.unsqueeze(keep_mask, [1])
- pred_label = paddle.where(keep_mask, pred_label,
- paddle.ones_like(pred_label) * -1)
- pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
- return bboxes, pred_result, bbox_num
- def get_origin_shape(self, ):
- return self.origin_shape_list
- @register
- class MaskPostProcess(object):
- __shared__ = ['export_onnx', 'assign_on_cpu']
- """
- refer to:
- https://github.com/facebookresearch/detectron2/layers/mask_ops.py
- Get Mask output according to the output from model
- """
- def __init__(self,
- binary_thresh=0.5,
- export_onnx=False,
- assign_on_cpu=False):
- super(MaskPostProcess, self).__init__()
- self.binary_thresh = binary_thresh
- self.export_onnx = export_onnx
- self.assign_on_cpu = assign_on_cpu
- def paste_mask(self, masks, boxes, im_h, im_w):
- """
- Paste the mask prediction to the original image.
- """
- x0_int, y0_int = 0, 0
- x1_int, y1_int = im_w, im_h
- x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
- N = masks.shape[0]
- img_y = paddle.arange(y0_int, y1_int) + 0.5
- img_x = paddle.arange(x0_int, x1_int) + 0.5
- img_y = (img_y - y0) / (y1 - y0) * 2 - 1
- img_x = (img_x - x0) / (x1 - x0) * 2 - 1
- # img_x, img_y have shapes (N, w), (N, h)
- if self.assign_on_cpu:
- paddle.set_device('cpu')
- gx = img_x[:, None, :].expand(
- [N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
- gy = img_y[:, :, None].expand(
- [N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
- grid = paddle.stack([gx, gy], axis=3)
- img_masks = F.grid_sample(masks, grid, align_corners=False)
- return img_masks[:, 0]
- def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
- """
- Decode the mask_out and paste the mask to the origin image.
- Args:
- mask_out (Tensor): mask_head output with shape [N, 28, 28].
- bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
- and NMS, including labels, scores and bboxes.
- bbox_num (Tensor): The number of prediction boxes of each batch with
- shape [1], and is N.
- origin_shape (Tensor): The origin shape of the input image, the tensor
- shape is [N, 2], and each row is [h, w].
- Returns:
- pred_result (Tensor): The final prediction mask results with shape
- [N, h, w] in binary mask style.
- """
- num_mask = mask_out.shape[0]
- origin_shape = paddle.cast(origin_shape, 'int32')
- device = paddle.device.get_device()
- if self.export_onnx:
- h, w = origin_shape[0][0], origin_shape[0][1]
- mask_onnx = self.paste_mask(mask_out[:, None, :, :], bboxes[:, 2:],
- h, w)
- mask_onnx = mask_onnx >= self.binary_thresh
- pred_result = paddle.cast(mask_onnx, 'int32')
- else:
- max_h = paddle.max(origin_shape[:, 0])
- max_w = paddle.max(origin_shape[:, 1])
- pred_result = paddle.zeros(
- [num_mask, max_h, max_w], dtype='int32') - 1
- id_start = 0
- for i in range(paddle.shape(bbox_num)[0]):
- bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
- mask_out_i = mask_out[id_start:id_start + bbox_num[i], :, :]
- im_h = origin_shape[i, 0]
- im_w = origin_shape[i, 1]
- bbox_num_i = bbox_num[id_start]
- pred_mask = self.paste_mask(mask_out_i[:, None, :, :],
- bboxes_i[:, 2:], im_h, im_w)
- pred_mask = paddle.cast(pred_mask >= self.binary_thresh,
- 'int32')
- pred_result[id_start:id_start + bbox_num[i], :im_h, :
- im_w] = pred_mask
- id_start += bbox_num[i]
- if self.assign_on_cpu:
- paddle.set_device(device)
- return pred_result
- @register
- class FCOSPostProcess(object):
- __inject__ = ['decode', 'nms']
- def __init__(self, decode=None, nms=None):
- super(FCOSPostProcess, self).__init__()
- self.decode = decode
- self.nms = nms
- def __call__(self, fcos_head_outs, scale_factor):
- """
- Decode the bbox and do NMS in FCOS.
- """
- locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
- bboxes, score = self.decode(locations, cls_logits, bboxes_reg,
- centerness, scale_factor)
- bbox_pred, bbox_num, _ = self.nms(bboxes, score)
- return bbox_pred, bbox_num
- @register
- class S2ANetBBoxPostProcess(nn.Layer):
- __shared__ = ['num_classes']
- __inject__ = ['nms']
- def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None):
- super(S2ANetBBoxPostProcess, self).__init__()
- self.num_classes = num_classes
- self.nms_pre = nms_pre
- self.min_bbox_size = min_bbox_size
- self.nms = nms
- self.origin_shape_list = []
- self.fake_pred_cls_score_bbox = paddle.to_tensor(
- np.array(
- [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
- dtype='float32'))
- self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
- def forward(self, pred_scores, pred_bboxes):
- """
- pred_scores : [N, M] score
- pred_bboxes : [N, 5] xc, yc, w, h, a
- im_shape : [N, 2] im_shape
- scale_factor : [N, 2] scale_factor
- """
- pred_ploys0 = rbox2poly(pred_bboxes)
- pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0)
- # pred_scores [NA, 16] --> [16, NA]
- pred_scores0 = paddle.transpose(pred_scores, [1, 0])
- pred_scores = paddle.unsqueeze(pred_scores0, axis=0)
- pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores,
- self.num_classes)
- # Prevent empty bbox_pred from decode or NMS.
- # Bboxes and score before NMS may be empty due to the score threshold.
- if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[
- 1] <= 1:
- pred_cls_score_bbox = self.fake_pred_cls_score_bbox
- bbox_num = self.fake_bbox_num
- pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10])
- return pred_cls_score_bbox, bbox_num
- def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
- """
- Rescale, clip and filter the bbox from the output of NMS to
- get final prediction.
- Args:
- bboxes(Tensor): bboxes [N, 10]
- bbox_num(Tensor): bbox_num
- im_shape(Tensor): [1 2]
- scale_factor(Tensor): [1 2]
- Returns:
- bbox_pred(Tensor): The output is the prediction with shape [N, 8]
- including labels, scores and bboxes. The size of
- bboxes are corresponding to the original image.
- """
- origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
- origin_shape_list = []
- scale_factor_list = []
- # scale_factor: scale_y, scale_x
- for i in range(bbox_num.shape[0]):
- expand_shape = paddle.expand(origin_shape[i:i + 1, :],
- [bbox_num[i], 2])
- scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
- scale = paddle.concat([
- scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
- scale_y
- ])
- expand_scale = paddle.expand(scale, [bbox_num[i], 8])
- origin_shape_list.append(expand_shape)
- scale_factor_list.append(expand_scale)
- origin_shape_list = paddle.concat(origin_shape_list)
- scale_factor_list = paddle.concat(scale_factor_list)
- # bboxes: [N, 10], label, score, bbox
- pred_label_score = bboxes[:, 0:2]
- pred_bbox = bboxes[:, 2:]
- # rescale bbox to original image
- pred_bbox = pred_bbox.reshape([-1, 8])
- scaled_bbox = pred_bbox / scale_factor_list
- origin_h = origin_shape_list[:, 0]
- origin_w = origin_shape_list[:, 1]
- bboxes = scaled_bbox
- zeros = paddle.zeros_like(origin_h)
- x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
- y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
- x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
- y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
- x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
- y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
- x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
- y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
- pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
- pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
- return pred_result
- @register
- class JDEBBoxPostProcess(nn.Layer):
- __shared__ = ['num_classes']
- __inject__ = ['decode', 'nms']
- def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True):
- super(JDEBBoxPostProcess, self).__init__()
- self.num_classes = num_classes
- self.decode = decode
- self.nms = nms
- self.return_idx = return_idx
- self.fake_bbox_pred = paddle.to_tensor(
- np.array(
- [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
- self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
- self.fake_nms_keep_idx = paddle.to_tensor(
- np.array(
- [[0]], dtype='int32'))
- self.fake_yolo_boxes_out = paddle.to_tensor(
- np.array(
- [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32'))
- self.fake_yolo_scores_out = paddle.to_tensor(
- np.array(
- [[[0.0]]], dtype='float32'))
- self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64'))
- def forward(self, head_out, anchors):
- """
- Decode the bbox and do NMS for JDE model.
- Args:
- head_out (list): Bbox_pred and cls_prob of bbox_head output.
- anchors (list): Anchors of JDE model.
- Returns:
- boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'.
- bbox_pred (Tensor): The output is the prediction with shape [N, 6]
- including labels, scores and bboxes.
- bbox_num (Tensor): The number of prediction of each batch with shape [N].
- nms_keep_idx (Tensor): The index of kept bboxes after NMS.
- """
- boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors)
- if len(boxes_idx) == 0:
- boxes_idx = self.fake_boxes_idx
- yolo_boxes_out = self.fake_yolo_boxes_out
- yolo_scores_out = self.fake_yolo_scores_out
- else:
- yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx)
- # TODO: only support bs=1 now
- yolo_boxes_out = paddle.reshape(
- yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4])
- yolo_scores_out = paddle.reshape(
- yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)])
- boxes_idx = boxes_idx[:, 1:]
- if self.return_idx:
- bbox_pred, bbox_num, nms_keep_idx = self.nms(
- yolo_boxes_out, yolo_scores_out, self.num_classes)
- if bbox_pred.shape[0] == 0:
- bbox_pred = self.fake_bbox_pred
- bbox_num = self.fake_bbox_num
- nms_keep_idx = self.fake_nms_keep_idx
- return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
- else:
- bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out,
- self.num_classes)
- if bbox_pred.shape[0] == 0:
- bbox_pred = self.fake_bbox_pred
- bbox_num = self.fake_bbox_num
- return _, bbox_pred, bbox_num, _
- @register
- class CenterNetPostProcess(TTFBox):
- """
- Postprocess the model outputs to get final prediction:
- 1. Do NMS for heatmap to get top `max_per_img` bboxes.
- 2. Decode bboxes using center offset and box size.
- 3. Rescale decoded bboxes reference to the origin image shape.
- Args:
- max_per_img(int): the maximum number of predicted objects in a image,
- 500 by default.
- down_ratio(int): the down ratio from images to heatmap, 4 by default.
- regress_ltrb (bool): whether to regress left/top/right/bottom or
- width/height for a box, true by default.
- for_mot (bool): whether return other features used in tracking model.
- """
- __shared__ = ['down_ratio', 'for_mot']
- def __init__(self,
- max_per_img=500,
- down_ratio=4,
- regress_ltrb=True,
- for_mot=False):
- super(TTFBox, self).__init__()
- self.max_per_img = max_per_img
- self.down_ratio = down_ratio
- self.regress_ltrb = regress_ltrb
- self.for_mot = for_mot
- def __call__(self, hm, wh, reg, im_shape, scale_factor):
- heat = self._simple_nms(hm)
- scores, inds, topk_clses, ys, xs = self._topk(heat)
- scores = scores.unsqueeze(1)
- clses = topk_clses.unsqueeze(1)
- reg_t = paddle.transpose(reg, [0, 2, 3, 1])
- # Like TTFBox, batch size is 1.
- # TODO: support batch size > 1
- reg = paddle.reshape(reg_t, [-1, reg_t.shape[-1]])
- reg = paddle.gather(reg, inds)
- xs = paddle.cast(xs, 'float32')
- ys = paddle.cast(ys, 'float32')
- xs = xs + reg[:, 0:1]
- ys = ys + reg[:, 1:2]
- wh_t = paddle.transpose(wh, [0, 2, 3, 1])
- wh = paddle.reshape(wh_t, [-1, wh_t.shape[-1]])
- wh = paddle.gather(wh, inds)
- if self.regress_ltrb:
- x1 = xs - wh[:, 0:1]
- y1 = ys - wh[:, 1:2]
- x2 = xs + wh[:, 2:3]
- y2 = ys + wh[:, 3:4]
- else:
- x1 = xs - wh[:, 0:1] / 2
- y1 = ys - wh[:, 1:2] / 2
- x2 = xs + wh[:, 0:1] / 2
- y2 = ys + wh[:, 1:2] / 2
- n, c, feat_h, feat_w = paddle.shape(hm)
- padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
- padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
- x1 = x1 * self.down_ratio
- y1 = y1 * self.down_ratio
- x2 = x2 * self.down_ratio
- y2 = y2 * self.down_ratio
- x1 = x1 - padw
- y1 = y1 - padh
- x2 = x2 - padw
- y2 = y2 - padh
- bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
- scale_y = scale_factor[:, 0:1]
- scale_x = scale_factor[:, 1:2]
- scale_expand = paddle.concat(
- [scale_x, scale_y, scale_x, scale_y], axis=1)
- boxes_shape = bboxes.shape[:]
- scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
- bboxes = paddle.divide(bboxes, scale_expand)
- results = paddle.concat([clses, scores, bboxes], axis=1)
- if self.for_mot:
- return results, inds, topk_clses
- else:
- return results, paddle.shape(results)[0:1], topk_clses
- @register
- class DETRBBoxPostProcess(object):
- __shared__ = ['num_classes', 'use_focal_loss']
- __inject__ = []
- def __init__(self,
- num_classes=80,
- num_top_queries=100,
- use_focal_loss=False):
- super(DETRBBoxPostProcess, self).__init__()
- self.num_classes = num_classes
- self.num_top_queries = num_top_queries
- self.use_focal_loss = use_focal_loss
- def __call__(self, head_out, im_shape, scale_factor):
- """
- Decode the bbox.
- Args:
- head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
- im_shape (Tensor): The shape of the input image.
- scale_factor (Tensor): The scale factor of the input image.
- Returns:
- bbox_pred (Tensor): The output prediction with shape [N, 6], including
- labels, scores and bboxes. The size of bboxes are corresponding
- to the input image, the bboxes may be used in other branch.
- bbox_num (Tensor): The number of prediction boxes of each batch with
- shape [bs], and is N.
- """
- bboxes, logits, masks = head_out
- bbox_pred = bbox_cxcywh_to_xyxy(bboxes)
- origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
- img_h, img_w = origin_shape.unbind(1)
- origin_shape = paddle.stack(
- [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0)
- bbox_pred *= origin_shape
- scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax(
- logits)[:, :, :-1]
- if not self.use_focal_loss:
- scores, labels = scores.max(-1), scores.argmax(-1)
- if scores.shape[1] > self.num_top_queries:
- scores, index = paddle.topk(
- scores, self.num_top_queries, axis=-1)
- labels = paddle.stack(
- [paddle.gather(l, i) for l, i in zip(labels, index)])
- bbox_pred = paddle.stack(
- [paddle.gather(b, i) for b, i in zip(bbox_pred, index)])
- else:
- scores, index = paddle.topk(
- scores.reshape([logits.shape[0], -1]),
- self.num_top_queries,
- axis=-1)
- labels = index % logits.shape[2]
- index = index // logits.shape[2]
- bbox_pred = paddle.stack(
- [paddle.gather(b, i) for b, i in zip(bbox_pred, index)])
- bbox_pred = paddle.concat(
- [
- labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1),
- bbox_pred
- ],
- axis=-1)
- bbox_num = paddle.to_tensor(
- bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]])
- bbox_pred = bbox_pred.reshape([-1, 6])
- return bbox_pred, bbox_num
- @register
- class SparsePostProcess(object):
- __shared__ = ['num_classes']
- def __init__(self, num_proposals, num_classes=80):
- super(SparsePostProcess, self).__init__()
- self.num_classes = num_classes
- self.num_proposals = num_proposals
- def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh):
- """
- Arguments:
- box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
- The tensor predicts the classification probability for each proposal.
- box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
- The tensor predicts 4-vector (x,y,w,h) box
- regression values for every proposal
- scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img
- img_whwh (Tensor): tensors of shape [batch_size, 4]
- Returns:
- bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values:
- [label, confidence, xmin, ymin, xmax, ymax]
- bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image.
- """
- assert len(box_cls) == len(scale_factor_wh) == len(img_whwh)
- img_wh = img_whwh[:, :2]
- scores = F.sigmoid(box_cls)
- labels = paddle.arange(0, self.num_classes). \
- unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1)
- classes_all = []
- scores_all = []
- boxes_all = []
- for i, (scores_per_image,
- box_pred_per_image) in enumerate(zip(scores, box_pred)):
- scores_per_image, topk_indices = scores_per_image.flatten(
- 0, 1).topk(
- self.num_proposals, sorted=False)
- labels_per_image = paddle.gather(labels, topk_indices, axis=0)
- box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile(
- [1, self.num_classes, 1]).reshape([-1, 4])
- box_pred_per_image = paddle.gather(
- box_pred_per_image, topk_indices, axis=0)
- classes_all.append(labels_per_image)
- scores_all.append(scores_per_image)
- boxes_all.append(box_pred_per_image)
- bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32")
- boxes_final = []
- for i in range(len(scale_factor_wh)):
- classes = classes_all[i]
- boxes = boxes_all[i]
- scores = scores_all[i]
- boxes[:, 0::2] = paddle.clip(
- boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0]
- boxes[:, 1::2] = paddle.clip(
- boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1]
- boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), (
- boxes[:, 3] - boxes[:, 1]).numpy()
- keep = (boxes_w > 1.) & (boxes_h > 1.)
- if (keep.sum() == 0):
- bboxes = paddle.zeros([1, 6]).astype("float32")
- else:
- boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32")
- classes = paddle.to_tensor(classes.numpy()[keep]).astype(
- "float32").unsqueeze(-1)
- scores = paddle.to_tensor(scores.numpy()[keep]).astype(
- "float32").unsqueeze(-1)
- bboxes = paddle.concat([classes, scores, boxes], axis=-1)
- boxes_final.append(bboxes)
- bbox_num[i] = bboxes.shape[0]
- bbox_pred = paddle.concat(boxes_final)
- return bbox_pred, bbox_num
- def nms(dets, thresh):
- """Apply classic DPM-style greedy NMS."""
- if dets.shape[0] == 0:
- return dets[[], :]
- scores = dets[:, 0]
- x1 = dets[:, 1]
- y1 = dets[:, 2]
- x2 = dets[:, 3]
- y2 = dets[:, 4]
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
- ndets = dets.shape[0]
- suppressed = np.zeros((ndets), dtype=np.int)
- # nominal indices
- # _i, _j
- # sorted indices
- # i, j
- # temp variables for box i's (the box currently under consideration)
- # ix1, iy1, ix2, iy2, iarea
- # variables for computing overlap with box j (lower scoring box)
- # xx1, yy1, xx2, yy2
- # w, h
- # inter, ovr
- for _i in range(ndets):
- i = order[_i]
- if suppressed[i] == 1:
- continue
- ix1 = x1[i]
- iy1 = y1[i]
- ix2 = x2[i]
- iy2 = y2[i]
- iarea = areas[i]
- for _j in range(_i + 1, ndets):
- j = order[_j]
- if suppressed[j] == 1:
- continue
- xx1 = max(ix1, x1[j])
- yy1 = max(iy1, y1[j])
- xx2 = min(ix2, x2[j])
- yy2 = min(iy2, y2[j])
- w = max(0.0, xx2 - xx1 + 1)
- h = max(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (iarea + areas[j] - inter)
- if ovr >= thresh:
- suppressed[j] = 1
- keep = np.where(suppressed == 0)[0]
- dets = dets[keep, :]
- return dets
|