test_client.py 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import sys
  15. import numpy as np
  16. from paddle_serving_client import Client
  17. from paddle_serving_app.reader import *
  18. import cv2
  19. preprocess = Sequential([
  20. File2Image(), BGR2RGB(), Resize(
  21. (608, 608), interpolation=cv2.INTER_LINEAR), Div(255.0), Transpose(
  22. (2, 0, 1))
  23. ])
  24. postprocess = RCNNPostprocess(sys.argv[1], "output", [608, 608])
  25. client = Client()
  26. client.load_client_config("serving_client/serving_client_conf.prototxt")
  27. client.connect(['127.0.0.1:9393'])
  28. im = preprocess(sys.argv[2])
  29. fetch_map = client.predict(
  30. feed={
  31. "image": im,
  32. "im_shape": np.array(list(im.shape[1:])).reshape(-1),
  33. "scale_factor": np.array([1.0, 1.0]).reshape(-1),
  34. },
  35. fetch=["multiclass_nms3_0.tmp_0"],
  36. batch=False)
  37. print(fetch_map)
  38. fetch_map["image"] = sys.argv[2]
  39. postprocess(fetch_map)