123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import time
- import os
- import ast
- import argparse
- def argsparser():
- parser = argparse.ArgumentParser(description=__doc__)
- parser.add_argument(
- "--model_dir",
- type=str,
- default=None,
- help=("Directory include:'model.pdiparams', 'model.pdmodel', "
- "'infer_cfg.yml', created by tools/export_model.py."),
- required=True)
- parser.add_argument(
- "--image_file", type=str, default=None, help="Path of image file.")
- parser.add_argument(
- "--image_dir",
- type=str,
- default=None,
- help="Dir of image file, `image_file` has a higher priority.")
- parser.add_argument(
- "--batch_size", type=int, default=1, help="batch_size for inference.")
- parser.add_argument(
- "--video_file",
- type=str,
- default=None,
- help="Path of video file, `video_file` or `camera_id` has a highest priority."
- )
- parser.add_argument(
- "--camera_id",
- type=int,
- default=-1,
- help="device id of camera to predict.")
- parser.add_argument(
- "--threshold", type=float, default=0.5, help="Threshold of score.")
- parser.add_argument(
- "--output_dir",
- type=str,
- default="output",
- help="Directory of output visualization files.")
- parser.add_argument(
- "--run_mode",
- type=str,
- default='paddle',
- help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
- parser.add_argument(
- "--device",
- type=str,
- default='cpu',
- help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
- )
- parser.add_argument(
- "--use_gpu",
- type=ast.literal_eval,
- default=False,
- help="Deprecated, please use `--device`.")
- parser.add_argument(
- "--run_benchmark",
- type=ast.literal_eval,
- default=False,
- help="Whether to predict a image_file repeatedly for benchmark")
- parser.add_argument(
- "--enable_mkldnn",
- type=ast.literal_eval,
- default=False,
- help="Whether use mkldnn with CPU.")
- parser.add_argument(
- "--enable_mkldnn_bfloat16",
- type=ast.literal_eval,
- default=False,
- help="Whether use mkldnn bfloat16 inference with CPU.")
- parser.add_argument(
- "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
- parser.add_argument(
- "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
- parser.add_argument(
- "--trt_max_shape",
- type=int,
- default=1280,
- help="max_shape for TensorRT.")
- parser.add_argument(
- "--trt_opt_shape",
- type=int,
- default=640,
- help="opt_shape for TensorRT.")
- parser.add_argument(
- "--trt_calib_mode",
- type=bool,
- default=False,
- help="If the model is produced by TRT offline quantitative "
- "calibration, trt_calib_mode need to set True.")
- parser.add_argument(
- '--save_images',
- action='store_true',
- help='Save visualization image results.')
- parser.add_argument(
- '--save_mot_txts',
- action='store_true',
- help='Save tracking results (txt).')
- parser.add_argument(
- '--save_mot_txt_per_img',
- action='store_true',
- help='Save tracking results (txt) for each image.')
- parser.add_argument(
- '--scaled',
- type=bool,
- default=False,
- help="Whether coords after detector outputs are scaled, False in JDE YOLOv3 "
- "True in general detector.")
- parser.add_argument(
- "--tracker_config", type=str, default=None, help=("tracker donfig"))
- parser.add_argument(
- "--reid_model_dir",
- type=str,
- default=None,
- help=("Directory include:'model.pdiparams', 'model.pdmodel', "
- "'infer_cfg.yml', created by tools/export_model.py."))
- parser.add_argument(
- "--reid_batch_size",
- type=int,
- default=50,
- help="max batch_size for reid model inference.")
- parser.add_argument(
- '--use_dark',
- type=ast.literal_eval,
- default=True,
- help='whether to use darkpose to get better keypoint position predict ')
- parser.add_argument(
- "--action_file",
- type=str,
- default=None,
- help="Path of input file for action recognition.")
- parser.add_argument(
- "--window_size",
- type=int,
- default=50,
- help="Temporal size of skeleton feature for action recognition.")
- parser.add_argument(
- "--random_pad",
- type=ast.literal_eval,
- default=False,
- help="Whether do random padding for action recognition.")
- parser.add_argument(
- "--save_results",
- type=bool,
- default=False,
- help="Whether save detection result to file using coco format")
- return parser
- class Times(object):
- def __init__(self):
- self.time = 0.
- # start time
- self.st = 0.
- # end time
- self.et = 0.
- def start(self):
- self.st = time.time()
- def end(self, repeats=1, accumulative=True):
- self.et = time.time()
- if accumulative:
- self.time += (self.et - self.st) / repeats
- else:
- self.time = (self.et - self.st) / repeats
- def reset(self):
- self.time = 0.
- self.st = 0.
- self.et = 0.
- def value(self):
- return round(self.time, 4)
- class Timer(Times):
- def __init__(self, with_tracker=False):
- super(Timer, self).__init__()
- self.with_tracker = with_tracker
- self.preprocess_time_s = Times()
- self.inference_time_s = Times()
- self.postprocess_time_s = Times()
- self.tracking_time_s = Times()
- self.img_num = 0
- def info(self, average=False):
- pre_time = self.preprocess_time_s.value()
- infer_time = self.inference_time_s.value()
- post_time = self.postprocess_time_s.value()
- track_time = self.tracking_time_s.value()
- total_time = pre_time + infer_time + post_time
- if self.with_tracker:
- total_time = total_time + track_time
- total_time = round(total_time, 4)
- print("------------------ Inference Time Info ----------------------")
- print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
- self.img_num))
- preprocess_time = round(pre_time / max(1, self.img_num),
- 4) if average else pre_time
- postprocess_time = round(post_time / max(1, self.img_num),
- 4) if average else post_time
- inference_time = round(infer_time / max(1, self.img_num),
- 4) if average else infer_time
- tracking_time = round(track_time / max(1, self.img_num),
- 4) if average else track_time
- average_latency = total_time / max(1, self.img_num)
- qps = 0
- if total_time > 0:
- qps = 1 / average_latency
- print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
- average_latency * 1000, qps))
- if self.with_tracker:
- print(
- "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}".
- format(preprocess_time * 1000, inference_time * 1000,
- postprocess_time * 1000, tracking_time * 1000))
- else:
- print(
- "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}".
- format(preprocess_time * 1000, inference_time * 1000,
- postprocess_time * 1000))
- def report(self, average=False):
- dic = {}
- pre_time = self.preprocess_time_s.value()
- infer_time = self.inference_time_s.value()
- post_time = self.postprocess_time_s.value()
- track_time = self.tracking_time_s.value()
- dic['preprocess_time_s'] = round(pre_time / max(1, self.img_num),
- 4) if average else pre_time
- dic['inference_time_s'] = round(infer_time / max(1, self.img_num),
- 4) if average else infer_time
- dic['postprocess_time_s'] = round(post_time / max(1, self.img_num),
- 4) if average else post_time
- dic['img_num'] = self.img_num
- total_time = pre_time + infer_time + post_time
- if self.with_tracker:
- dic['tracking_time_s'] = round(track_time / max(1, self.img_num),
- 4) if average else track_time
- total_time = total_time + track_time
- dic['total_time_s'] = round(total_time, 4)
- return dic
- def get_current_memory_mb():
- """
- It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
- And this function Current program is time-consuming.
- """
- import pynvml
- import psutil
- import GPUtil
- gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))
- pid = os.getpid()
- p = psutil.Process(pid)
- info = p.memory_full_info()
- cpu_mem = info.uss / 1024. / 1024.
- gpu_mem = 0
- gpu_percent = 0
- gpus = GPUtil.getGPUs()
- if gpu_id is not None and len(gpus) > 0:
- gpu_percent = gpus[gpu_id].load
- pynvml.nvmlInit()
- handle = pynvml.nvmlDeviceGetHandleByIndex(0)
- meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
- gpu_mem = meminfo.used / 1024. / 1024.
- return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)
|