123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import time
- import yaml
- import cv2
- import numpy as np
- from collections import defaultdict
- import paddle
- from benchmark_utils import PaddleInferBenchmark
- from preprocess import decode_image
- from utils import argsparser, Timer, get_current_memory_mb
- from infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig
- # add python path
- import sys
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
- sys.path.insert(0, parent_path)
- from pptracking.python.mot import JDETracker
- from pptracking.python.mot.utils import MOTTimer, write_mot_results
- from pptracking.python.mot.visualize import plot_tracking_dict
- # Global dictionary
- MOT_JDE_SUPPORT_MODELS = {
- 'JDE',
- 'FairMOT',
- }
- class JDE_Detector(Detector):
- """
- Args:
- model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
- device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
- run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
- batch_size (int): size of pre batch in inference
- trt_min_shape (int): min shape for dynamic shape in trt
- trt_max_shape (int): max shape for dynamic shape in trt
- trt_opt_shape (int): opt shape for dynamic shape in trt
- trt_calib_mode (bool): If the model is produced by TRT offline quantitative
- calibration, trt_calib_mode need to set True
- cpu_threads (int): cpu threads
- enable_mkldnn (bool): whether to open MKLDNN
- output_dir (string): The path of output, default as 'output'
- threshold (float): Score threshold of the detected bbox, default as 0.5
- save_images (bool): Whether to save visualization image results, default as False
- save_mot_txts (bool): Whether to save tracking results (txt), default as False
- """
- def __init__(
- self,
- model_dir,
- tracker_config=None,
- device='CPU',
- run_mode='paddle',
- batch_size=1,
- trt_min_shape=1,
- trt_max_shape=1088,
- trt_opt_shape=608,
- trt_calib_mode=False,
- cpu_threads=1,
- enable_mkldnn=False,
- output_dir='output',
- threshold=0.5,
- save_images=False,
- save_mot_txts=False, ):
- super(JDE_Detector, self).__init__(
- model_dir=model_dir,
- device=device,
- run_mode=run_mode,
- batch_size=batch_size,
- trt_min_shape=trt_min_shape,
- trt_max_shape=trt_max_shape,
- trt_opt_shape=trt_opt_shape,
- trt_calib_mode=trt_calib_mode,
- cpu_threads=cpu_threads,
- enable_mkldnn=enable_mkldnn,
- output_dir=output_dir,
- threshold=threshold, )
- self.save_images = save_images
- self.save_mot_txts = save_mot_txts
- assert batch_size == 1, "MOT model only supports batch_size=1."
- self.det_times = Timer(with_tracker=True)
- self.num_classes = len(self.pred_config.labels)
- # tracker config
- assert self.pred_config.tracker, "The exported JDE Detector model should have tracker."
- cfg = self.pred_config.tracker
- min_box_area = cfg.get('min_box_area', 0.0)
- vertical_ratio = cfg.get('vertical_ratio', 0.0)
- conf_thres = cfg.get('conf_thres', 0.0)
- tracked_thresh = cfg.get('tracked_thresh', 0.7)
- metric_type = cfg.get('metric_type', 'euclidean')
- self.tracker = JDETracker(
- num_classes=self.num_classes,
- min_box_area=min_box_area,
- vertical_ratio=vertical_ratio,
- conf_thres=conf_thres,
- tracked_thresh=tracked_thresh,
- metric_type=metric_type)
- def postprocess(self, inputs, result):
- # postprocess output of predictor
- np_boxes = result['pred_dets']
- if np_boxes.shape[0] <= 0:
- print('[WARNNING] No object detected.')
- result = {'pred_dets': np.zeros([0, 6]), 'pred_embs': None}
- result = {k: v for k, v in result.items() if v is not None}
- return result
- def tracking(self, det_results):
- pred_dets = det_results['pred_dets'] # cls_id, score, x0, y0, x1, y1
- pred_embs = det_results['pred_embs']
- online_targets_dict = self.tracker.update(pred_dets, pred_embs)
- online_tlwhs = defaultdict(list)
- online_scores = defaultdict(list)
- online_ids = defaultdict(list)
- for cls_id in range(self.num_classes):
- online_targets = online_targets_dict[cls_id]
- for t in online_targets:
- tlwh = t.tlwh
- tid = t.track_id
- tscore = t.score
- if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
- if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
- 3] > self.tracker.vertical_ratio:
- continue
- online_tlwhs[cls_id].append(tlwh)
- online_ids[cls_id].append(tid)
- online_scores[cls_id].append(tscore)
- return online_tlwhs, online_scores, online_ids
- def predict(self, repeats=1):
- '''
- Args:
- repeats (int): repeats number for prediction
- Returns:
- result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- FairMOT(JDE)'s result include 'pred_embs': np.ndarray:
- shape: [N, 128]
- '''
- # model prediction
- np_pred_dets, np_pred_embs = None, None
- for i in range(repeats):
- self.predictor.run()
- output_names = self.predictor.get_output_names()
- boxes_tensor = self.predictor.get_output_handle(output_names[0])
- np_pred_dets = boxes_tensor.copy_to_cpu()
- embs_tensor = self.predictor.get_output_handle(output_names[1])
- np_pred_embs = embs_tensor.copy_to_cpu()
- result = dict(pred_dets=np_pred_dets, pred_embs=np_pred_embs)
- return result
- def predict_image(self,
- image_list,
- run_benchmark=False,
- repeats=1,
- visual=True,
- seq_name=None):
- mot_results = []
- num_classes = self.num_classes
- image_list.sort()
- ids2names = self.pred_config.labels
- data_type = 'mcmot' if num_classes > 1 else 'mot'
- for frame_id, img_file in enumerate(image_list):
- batch_image_list = [img_file] # bs=1 in MOT model
- if run_benchmark:
- # preprocess
- inputs = self.preprocess(batch_image_list) # warmup
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(batch_image_list)
- self.det_times.preprocess_time_s.end()
- # model prediction
- result_warmup = self.predict(repeats=repeats) # warmup
- self.det_times.inference_time_s.start()
- result = self.predict(repeats=repeats)
- self.det_times.inference_time_s.end(repeats=repeats)
- # postprocess
- result_warmup = self.postprocess(inputs, result) # warmup
- self.det_times.postprocess_time_s.start()
- det_result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- # tracking
- result_warmup = self.tracking(det_result)
- self.det_times.tracking_time_s.start()
- online_tlwhs, online_scores, online_ids = self.tracking(
- det_result)
- self.det_times.tracking_time_s.end()
- self.det_times.img_num += 1
- cm, gm, gu = get_current_memory_mb()
- self.cpu_mem += cm
- self.gpu_mem += gm
- self.gpu_util += gu
- else:
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(batch_image_list)
- self.det_times.preprocess_time_s.end()
- self.det_times.inference_time_s.start()
- result = self.predict()
- self.det_times.inference_time_s.end()
- self.det_times.postprocess_time_s.start()
- det_result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- # tracking process
- self.det_times.tracking_time_s.start()
- online_tlwhs, online_scores, online_ids = self.tracking(
- det_result)
- self.det_times.tracking_time_s.end()
- self.det_times.img_num += 1
- if visual:
- if len(image_list) > 1 and frame_id % 10 == 0:
- print('Tracking frame {}'.format(frame_id))
- frame, _ = decode_image(img_file, {})
- im = plot_tracking_dict(
- frame,
- num_classes,
- online_tlwhs,
- online_ids,
- online_scores,
- frame_id=frame_id,
- ids2names=ids2names)
- if seq_name is None:
- seq_name = image_list[0].split('/')[-2]
- save_dir = os.path.join(self.output_dir, seq_name)
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- cv2.imwrite(
- os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
- mot_results.append([online_tlwhs, online_scores, online_ids])
- return mot_results
- def predict_video(self, video_file, camera_id):
- video_out_name = 'mot_output.mp4'
- if camera_id != -1:
- capture = cv2.VideoCapture(camera_id)
- else:
- capture = cv2.VideoCapture(video_file)
- video_out_name = os.path.split(video_file)[-1]
- # Get Video info : resolution, fps, frame count
- width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
- height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
- fps = int(capture.get(cv2.CAP_PROP_FPS))
- frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
- print("fps: %d, frame_count: %d" % (fps, frame_count))
- if not os.path.exists(self.output_dir):
- os.makedirs(self.output_dir)
- out_path = os.path.join(self.output_dir, video_out_name)
- video_format = 'mp4v'
- fourcc = cv2.VideoWriter_fourcc(*video_format)
- writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
- frame_id = 1
- timer = MOTTimer()
- results = defaultdict(list) # support single class and multi classes
- num_classes = self.num_classes
- data_type = 'mcmot' if num_classes > 1 else 'mot'
- ids2names = self.pred_config.labels
- while (1):
- ret, frame = capture.read()
- if not ret:
- break
- if frame_id % 10 == 0:
- print('Tracking frame: %d' % (frame_id))
- frame_id += 1
- timer.tic()
- seq_name = video_out_name.split('.')[0]
- mot_results = self.predict_image(
- [frame[:, :, ::-1]], visual=False, seq_name=seq_name)
- timer.toc()
- online_tlwhs, online_scores, online_ids = mot_results[0]
- for cls_id in range(num_classes):
- results[cls_id].append(
- (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
- online_ids[cls_id]))
- fps = 1. / timer.duration
- im = plot_tracking_dict(
- frame,
- num_classes,
- online_tlwhs,
- online_ids,
- online_scores,
- frame_id=frame_id,
- fps=fps,
- ids2names=ids2names)
- writer.write(im)
- if camera_id != -1:
- cv2.imshow('Mask Detection', im)
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- if self.save_mot_txts:
- result_filename = os.path.join(
- self.output_dir, video_out_name.split('.')[-2] + '.txt')
- write_mot_results(result_filename, results, data_type, num_classes)
- writer.release()
- def main():
- detector = JDE_Detector(
- FLAGS.model_dir,
- tracker_config=None,
- device=FLAGS.device,
- run_mode=FLAGS.run_mode,
- batch_size=1,
- trt_min_shape=FLAGS.trt_min_shape,
- trt_max_shape=FLAGS.trt_max_shape,
- trt_opt_shape=FLAGS.trt_opt_shape,
- trt_calib_mode=FLAGS.trt_calib_mode,
- cpu_threads=FLAGS.cpu_threads,
- enable_mkldnn=FLAGS.enable_mkldnn,
- output_dir=FLAGS.output_dir,
- threshold=FLAGS.threshold,
- save_images=FLAGS.save_images,
- save_mot_txts=FLAGS.save_mot_txts)
- # predict from video file or camera video stream
- if FLAGS.video_file is not None or FLAGS.camera_id != -1:
- detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
- else:
- # predict from image
- img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
- detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
- if not FLAGS.run_benchmark:
- detector.det_times.info(average=True)
- else:
- mode = FLAGS.run_mode
- model_dir = FLAGS.model_dir
- model_info = {
- 'model_name': model_dir.strip('/').split('/')[-1],
- 'precision': mode.split('_')[-1]
- }
- bench_log(detector, img_list, model_info, name='MOT')
- if __name__ == '__main__':
- paddle.enable_static()
- parser = argsparser()
- FLAGS = parser.parse_args()
- print_arguments(FLAGS)
- FLAGS.device = FLAGS.device.upper()
- assert FLAGS.device in ['CPU', 'GPU', 'XPU'
- ], "device should be CPU, GPU or XPU"
- main()
|