123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import yaml
- import glob
- from functools import reduce
- import cv2
- import numpy as np
- import math
- import paddle
- from paddle.inference import Config
- from paddle.inference import create_predictor
- import sys
- # add deploy path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
- sys.path.insert(0, parent_path)
- from benchmark_utils import PaddleInferBenchmark
- from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine
- from visualize import visualize_attr
- from utils import argsparser, Timer, get_current_memory_mb
- from infer import Detector, get_test_images, print_arguments, load_predictor
- from PIL import Image, ImageDraw, ImageFont
- class AttrDetector(Detector):
- """
- Args:
- model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
- device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
- run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
- batch_size (int): size of pre batch in inference
- trt_min_shape (int): min shape for dynamic shape in trt
- trt_max_shape (int): max shape for dynamic shape in trt
- trt_opt_shape (int): opt shape for dynamic shape in trt
- trt_calib_mode (bool): If the model is produced by TRT offline quantitative
- calibration, trt_calib_mode need to set True
- cpu_threads (int): cpu threads
- enable_mkldnn (bool): whether to open MKLDNN
- output_dir (str): The path of output
- threshold (float): The threshold of score for visualization
- """
- def __init__(
- self,
- model_dir,
- device='CPU',
- run_mode='paddle',
- batch_size=1,
- trt_min_shape=1,
- trt_max_shape=1280,
- trt_opt_shape=640,
- trt_calib_mode=False,
- cpu_threads=1,
- enable_mkldnn=False,
- output_dir='output',
- threshold=0.5, ):
- super(AttrDetector, self).__init__(
- model_dir=model_dir,
- device=device,
- run_mode=run_mode,
- batch_size=batch_size,
- trt_min_shape=trt_min_shape,
- trt_max_shape=trt_max_shape,
- trt_opt_shape=trt_opt_shape,
- trt_calib_mode=trt_calib_mode,
- cpu_threads=cpu_threads,
- enable_mkldnn=enable_mkldnn,
- output_dir=output_dir,
- threshold=threshold, )
- def get_label(self):
- return self.pred_config.labels
- def postprocess(self, inputs, result):
- # postprocess output of predictor
- im_results = result['output']
- labels = self.pred_config.labels
- age_list = ['AgeLess18', 'Age18-60', 'AgeOver60']
- direct_list = ['Front', 'Side', 'Back']
- bag_list = ['HandBag', 'ShoulderBag', 'Backpack']
- upper_list = ['UpperStride', 'UpperLogo', 'UpperPlaid', 'UpperSplice']
- lower_list = [
- 'LowerStripe', 'LowerPattern', 'LongCoat', 'Trousers', 'Shorts',
- 'Skirt&Dress'
- ]
- glasses_threshold = 0.3
- hold_threshold = 0.6
- batch_res = []
- for res in im_results:
- res = res.tolist()
- label_res = []
- # gender
- gender = 'Female' if res[22] > self.threshold else 'Male'
- label_res.append(gender)
- # age
- age = age_list[np.argmax(res[19:22])]
- label_res.append(age)
- # direction
- direction = direct_list[np.argmax(res[23:])]
- label_res.append(direction)
- # glasses
- glasses = 'Glasses: '
- if res[1] > glasses_threshold:
- glasses += 'True'
- else:
- glasses += 'False'
- label_res.append(glasses)
- # hat
- hat = 'Hat: '
- if res[0] > self.threshold:
- hat += 'True'
- else:
- hat += 'False'
- label_res.append(hat)
- # hold obj
- hold_obj = 'HoldObjectsInFront: '
- if res[18] > hold_threshold:
- hold_obj += 'True'
- else:
- hold_obj += 'False'
- label_res.append(hold_obj)
- # bag
- bag = bag_list[np.argmax(res[15:18])]
- bag_score = res[15 + np.argmax(res[15:18])]
- bag_label = bag if bag_score > self.threshold else 'No bag'
- label_res.append(bag_label)
- # upper
- upper_res = res[4:8]
- upper_label = 'Upper:'
- sleeve = 'LongSleeve' if res[3] > res[2] else 'ShortSleeve'
- upper_label += ' {}'.format(sleeve)
- for i, r in enumerate(upper_res):
- if r > self.threshold:
- upper_label += ' {}'.format(upper_list[i])
- label_res.append(upper_label)
- # lower
- lower_res = res[8:14]
- lower_label = 'Lower: '
- has_lower = False
- for i, l in enumerate(lower_res):
- if l > self.threshold:
- lower_label += ' {}'.format(lower_list[i])
- has_lower = True
- if not has_lower:
- lower_label += ' {}'.format(lower_list[np.argmax(lower_res)])
- label_res.append(lower_label)
- # shoe
- shoe = 'Boots' if res[14] > self.threshold else 'No boots'
- label_res.append(shoe)
- batch_res.append(label_res)
- result = {'output': batch_res}
- return result
- def predict(self, repeats=1):
- '''
- Args:
- repeats (int): repeats number for prediction
- Returns:
- result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- MaskRCNN's result include 'masks': np.ndarray:
- shape: [N, im_h, im_w]
- '''
- # model prediction
- for i in range(repeats):
- self.predictor.run()
- output_names = self.predictor.get_output_names()
- output_tensor = self.predictor.get_output_handle(output_names[0])
- np_output = output_tensor.copy_to_cpu()
- result = dict(output=np_output)
- return result
- def predict_image(self,
- image_list,
- run_benchmark=False,
- repeats=1,
- visual=True):
- batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
- results = []
- for i in range(batch_loop_cnt):
- start_index = i * self.batch_size
- end_index = min((i + 1) * self.batch_size, len(image_list))
- batch_image_list = image_list[start_index:end_index]
- if run_benchmark:
- # preprocess
- inputs = self.preprocess(batch_image_list) # warmup
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(batch_image_list)
- self.det_times.preprocess_time_s.end()
- # model prediction
- result = self.predict(repeats=repeats) # warmup
- self.det_times.inference_time_s.start()
- result = self.predict(repeats=repeats)
- self.det_times.inference_time_s.end(repeats=repeats)
- # postprocess
- result_warmup = self.postprocess(inputs, result) # warmup
- self.det_times.postprocess_time_s.start()
- result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- self.det_times.img_num += len(batch_image_list)
- cm, gm, gu = get_current_memory_mb()
- self.cpu_mem += cm
- self.gpu_mem += gm
- self.gpu_util += gu
- else:
- # preprocess
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(batch_image_list)
- self.det_times.preprocess_time_s.end()
- # model prediction
- self.det_times.inference_time_s.start()
- result = self.predict()
- self.det_times.inference_time_s.end()
- # postprocess
- self.det_times.postprocess_time_s.start()
- result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- self.det_times.img_num += len(batch_image_list)
- if visual:
- visualize(
- batch_image_list, result, output_dir=self.output_dir)
- results.append(result)
- if visual:
- print('Test iter {}'.format(i))
- results = self.merge_batch_result(results)
- return results
- def merge_batch_result(self, batch_result):
- if len(batch_result) == 1:
- return batch_result[0]
- res_key = batch_result[0].keys()
- results = {k: [] for k in res_key}
- for res in batch_result:
- for k, v in res.items():
- results[k].extend(v)
- return results
- def visualize(image_list, batch_res, output_dir='output'):
- # visualize the predict result
- batch_res = batch_res['output']
- for image_file, res in zip(image_list, batch_res):
- im = visualize_attr(image_file, [res])
- if not os.path.exists(output_dir):
- os.makedirs(output_dir)
- img_name = os.path.split(image_file)[-1]
- out_path = os.path.join(output_dir, img_name)
- cv2.imwrite(out_path, im)
- print("save result to: " + out_path)
- def main():
- detector = AttrDetector(
- FLAGS.model_dir,
- device=FLAGS.device,
- run_mode=FLAGS.run_mode,
- batch_size=FLAGS.batch_size,
- trt_min_shape=FLAGS.trt_min_shape,
- trt_max_shape=FLAGS.trt_max_shape,
- trt_opt_shape=FLAGS.trt_opt_shape,
- trt_calib_mode=FLAGS.trt_calib_mode,
- cpu_threads=FLAGS.cpu_threads,
- enable_mkldnn=FLAGS.enable_mkldnn,
- threshold=FLAGS.threshold,
- output_dir=FLAGS.output_dir)
- # predict from image
- if FLAGS.image_dir is None and FLAGS.image_file is not None:
- assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
- img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
- detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
- if not FLAGS.run_benchmark:
- detector.det_times.info(average=True)
- else:
- mems = {
- 'cpu_rss_mb': detector.cpu_mem / len(img_list),
- 'gpu_rss_mb': detector.gpu_mem / len(img_list),
- 'gpu_util': detector.gpu_util * 100 / len(img_list)
- }
- perf_info = detector.det_times.report(average=True)
- model_dir = FLAGS.model_dir
- mode = FLAGS.run_mode
- model_info = {
- 'model_name': model_dir.strip('/').split('/')[-1],
- 'precision': mode.split('_')[-1]
- }
- data_info = {
- 'batch_size': FLAGS.batch_size,
- 'shape': "dynamic_shape",
- 'data_num': perf_info['img_num']
- }
- det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
- perf_info, mems)
- det_log('Attr')
- if __name__ == '__main__':
- paddle.enable_static()
- parser = argsparser()
- FLAGS = parser.parse_args()
- print_arguments(FLAGS)
- FLAGS.device = FLAGS.device.upper()
- assert FLAGS.device in ['CPU', 'GPU', 'XPU'
- ], "device should be CPU, GPU or XPU"
- assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
- main()
|