123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import logging
- import paddle
- import paddle.inference as paddle_infer
- from pathlib import Path
- CUR_DIR = os.path.dirname(os.path.abspath(__file__))
- LOG_PATH_ROOT = f"{CUR_DIR}/../../output"
- class PaddleInferBenchmark(object):
- def __init__(self,
- config,
- model_info: dict={},
- data_info: dict={},
- perf_info: dict={},
- resource_info: dict={},
- **kwargs):
- """
- Construct PaddleInferBenchmark Class to format logs.
- args:
- config(paddle.inference.Config): paddle inference config
- model_info(dict): basic model info
- {'model_name': 'resnet50'
- 'precision': 'fp32'}
- data_info(dict): input data info
- {'batch_size': 1
- 'shape': '3,224,224'
- 'data_num': 1000}
- perf_info(dict): performance result
- {'preprocess_time_s': 1.0
- 'inference_time_s': 2.0
- 'postprocess_time_s': 1.0
- 'total_time_s': 4.0}
- resource_info(dict):
- cpu and gpu resources
- {'cpu_rss': 100
- 'gpu_rss': 100
- 'gpu_util': 60}
- """
- # PaddleInferBenchmark Log Version
- self.log_version = "1.0.3"
- # Paddle Version
- self.paddle_version = paddle.__version__
- self.paddle_commit = paddle.__git_commit__
- paddle_infer_info = paddle_infer.get_version()
- self.paddle_branch = paddle_infer_info.strip().split(': ')[-1]
- # model info
- self.model_info = model_info
- # data info
- self.data_info = data_info
- # perf info
- self.perf_info = perf_info
- try:
- # required value
- self.model_name = model_info['model_name']
- self.precision = model_info['precision']
- self.batch_size = data_info['batch_size']
- self.shape = data_info['shape']
- self.data_num = data_info['data_num']
- self.inference_time_s = round(perf_info['inference_time_s'], 4)
- except:
- self.print_help()
- raise ValueError(
- "Set argument wrong, please check input argument and its type")
- self.preprocess_time_s = perf_info.get('preprocess_time_s', 0)
- self.postprocess_time_s = perf_info.get('postprocess_time_s', 0)
- self.with_tracker = True if 'tracking_time_s' in perf_info else False
- self.tracking_time_s = perf_info.get('tracking_time_s', 0)
- self.total_time_s = perf_info.get('total_time_s', 0)
- self.inference_time_s_90 = perf_info.get("inference_time_s_90", "")
- self.inference_time_s_99 = perf_info.get("inference_time_s_99", "")
- self.succ_rate = perf_info.get("succ_rate", "")
- self.qps = perf_info.get("qps", "")
- # conf info
- self.config_status = self.parse_config(config)
- # mem info
- if isinstance(resource_info, dict):
- self.cpu_rss_mb = int(resource_info.get('cpu_rss_mb', 0))
- self.cpu_vms_mb = int(resource_info.get('cpu_vms_mb', 0))
- self.cpu_shared_mb = int(resource_info.get('cpu_shared_mb', 0))
- self.cpu_dirty_mb = int(resource_info.get('cpu_dirty_mb', 0))
- self.cpu_util = round(resource_info.get('cpu_util', 0), 2)
- self.gpu_rss_mb = int(resource_info.get('gpu_rss_mb', 0))
- self.gpu_util = round(resource_info.get('gpu_util', 0), 2)
- self.gpu_mem_util = round(resource_info.get('gpu_mem_util', 0), 2)
- else:
- self.cpu_rss_mb = 0
- self.cpu_vms_mb = 0
- self.cpu_shared_mb = 0
- self.cpu_dirty_mb = 0
- self.cpu_util = 0
- self.gpu_rss_mb = 0
- self.gpu_util = 0
- self.gpu_mem_util = 0
- # init benchmark logger
- self.benchmark_logger()
- def benchmark_logger(self):
- """
- benchmark logger
- """
- # remove other logging handler
- for handler in logging.root.handlers[:]:
- logging.root.removeHandler(handler)
- # Init logger
- FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
- log_output = f"{LOG_PATH_ROOT}/{self.model_name}.log"
- Path(f"{LOG_PATH_ROOT}").mkdir(parents=True, exist_ok=True)
- logging.basicConfig(
- level=logging.INFO,
- format=FORMAT,
- handlers=[
- logging.FileHandler(
- filename=log_output, mode='w'),
- logging.StreamHandler(),
- ])
- self.logger = logging.getLogger(__name__)
- self.logger.info(
- f"Paddle Inference benchmark log will be saved to {log_output}")
- def parse_config(self, config) -> dict:
- """
- parse paddle predictor config
- args:
- config(paddle.inference.Config): paddle inference config
- return:
- config_status(dict): dict style config info
- """
- if isinstance(config, paddle_infer.Config):
- config_status = {}
- config_status['runtime_device'] = "gpu" if config.use_gpu(
- ) else "cpu"
- config_status['ir_optim'] = config.ir_optim()
- config_status['enable_tensorrt'] = config.tensorrt_engine_enabled()
- config_status['precision'] = self.precision
- config_status['enable_mkldnn'] = config.mkldnn_enabled()
- config_status[
- 'cpu_math_library_num_threads'] = config.cpu_math_library_num_threads(
- )
- elif isinstance(config, dict):
- config_status['runtime_device'] = config.get('runtime_device', "")
- config_status['ir_optim'] = config.get('ir_optim', "")
- config_status['enable_tensorrt'] = config.get('enable_tensorrt', "")
- config_status['precision'] = config.get('precision', "")
- config_status['enable_mkldnn'] = config.get('enable_mkldnn', "")
- config_status['cpu_math_library_num_threads'] = config.get(
- 'cpu_math_library_num_threads', "")
- else:
- self.print_help()
- raise ValueError(
- "Set argument config wrong, please check input argument and its type"
- )
- return config_status
- def report(self, identifier=None):
- """
- print log report
- args:
- identifier(string): identify log
- """
- if identifier:
- identifier = f"[{identifier}]"
- else:
- identifier = ""
- self.logger.info("\n")
- self.logger.info(
- "---------------------- Paddle info ----------------------")
- self.logger.info(f"{identifier} paddle_version: {self.paddle_version}")
- self.logger.info(f"{identifier} paddle_commit: {self.paddle_commit}")
- self.logger.info(f"{identifier} paddle_branch: {self.paddle_branch}")
- self.logger.info(f"{identifier} log_api_version: {self.log_version}")
- self.logger.info(
- "----------------------- Conf info -----------------------")
- self.logger.info(
- f"{identifier} runtime_device: {self.config_status['runtime_device']}"
- )
- self.logger.info(
- f"{identifier} ir_optim: {self.config_status['ir_optim']}")
- self.logger.info(f"{identifier} enable_memory_optim: {True}")
- self.logger.info(
- f"{identifier} enable_tensorrt: {self.config_status['enable_tensorrt']}"
- )
- self.logger.info(
- f"{identifier} enable_mkldnn: {self.config_status['enable_mkldnn']}")
- self.logger.info(
- f"{identifier} cpu_math_library_num_threads: {self.config_status['cpu_math_library_num_threads']}"
- )
- self.logger.info(
- "----------------------- Model info ----------------------")
- self.logger.info(f"{identifier} model_name: {self.model_name}")
- self.logger.info(f"{identifier} precision: {self.precision}")
- self.logger.info(
- "----------------------- Data info -----------------------")
- self.logger.info(f"{identifier} batch_size: {self.batch_size}")
- self.logger.info(f"{identifier} input_shape: {self.shape}")
- self.logger.info(f"{identifier} data_num: {self.data_num}")
- self.logger.info(
- "----------------------- Perf info -----------------------")
- self.logger.info(
- f"{identifier} cpu_rss(MB): {self.cpu_rss_mb}, cpu_vms: {self.cpu_vms_mb}, cpu_shared_mb: {self.cpu_shared_mb}, cpu_dirty_mb: {self.cpu_dirty_mb}, cpu_util: {self.cpu_util}%"
- )
- self.logger.info(
- f"{identifier} gpu_rss(MB): {self.gpu_rss_mb}, gpu_util: {self.gpu_util}%, gpu_mem_util: {self.gpu_mem_util}%"
- )
- self.logger.info(
- f"{identifier} total time spent(s): {self.total_time_s}")
- if self.with_tracker:
- self.logger.info(
- f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, "
- f"inference_time(ms): {round(self.inference_time_s*1000, 1)}, "
- f"postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}, "
- f"tracking_time(ms): {round(self.tracking_time_s*1000, 1)}")
- else:
- self.logger.info(
- f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, "
- f"inference_time(ms): {round(self.inference_time_s*1000, 1)}, "
- f"postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}"
- )
- if self.inference_time_s_90:
- self.looger.info(
- f"{identifier} 90%_cost: {self.inference_time_s_90}, 99%_cost: {self.inference_time_s_99}, succ_rate: {self.succ_rate}"
- )
- if self.qps:
- self.logger.info(f"{identifier} QPS: {self.qps}")
- def print_help(self):
- """
- print function help
- """
- print("""Usage:
- ==== Print inference benchmark logs. ====
- config = paddle.inference.Config()
- model_info = {'model_name': 'resnet50'
- 'precision': 'fp32'}
- data_info = {'batch_size': 1
- 'shape': '3,224,224'
- 'data_num': 1000}
- perf_info = {'preprocess_time_s': 1.0
- 'inference_time_s': 2.0
- 'postprocess_time_s': 1.0
- 'total_time_s': 4.0}
- resource_info = {'cpu_rss_mb': 100
- 'gpu_rss_mb': 100
- 'gpu_util': 60}
- log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info)
- log('Test')
- """)
- def __call__(self, identifier=None):
- """
- __call__
- args:
- identifier(string): identify log
- """
- self.report(identifier)
|