123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <iostream>
- #include <memory>
- #include <string>
- #include <unordered_map>
- #include <utility>
- #include <vector>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include "json/json.h"
- namespace PaddleDetection {
- // Object for storing all preprocessed data
- class ImageBlob {
- public:
- // image width and height
- std::vector<float> im_shape_;
- // Buffer for image data after preprocessing
- std::vector<float> im_data_;
- // in net data shape(after pad)
- std::vector<float> in_net_shape_;
- // Evaluation image width and height
- // std::vector<float> eval_im_size_f_;
- // Scale factor for image size to origin image size
- std::vector<float> scale_factor_;
- };
- // Abstraction of preprocessing opration class
- class PreprocessOp {
- public:
- virtual void Init(const Json::Value& item) = 0;
- virtual void Run(cv::Mat* im, ImageBlob* data) = 0;
- };
- class InitInfo : public PreprocessOp {
- public:
- virtual void Init(const Json::Value& item) {}
- virtual void Run(cv::Mat* im, ImageBlob* data);
- };
- class NormalizeImage : public PreprocessOp {
- public:
- virtual void Init(const Json::Value& item) {
- mean_.clear();
- scale_.clear();
- for (auto tmp : item["mean"]) {
- mean_.emplace_back(tmp.as<float>());
- }
- for (auto tmp : item["std"]) {
- scale_.emplace_back(tmp.as<float>());
- }
- is_scale_ = item["is_scale"].as<bool>();
- }
- virtual void Run(cv::Mat* im, ImageBlob* data);
- private:
- // CHW or HWC
- std::vector<float> mean_;
- std::vector<float> scale_;
- bool is_scale_;
- };
- class Permute : public PreprocessOp {
- public:
- virtual void Init(const Json::Value& item) {}
- virtual void Run(cv::Mat* im, ImageBlob* data);
- };
- class Resize : public PreprocessOp {
- public:
- virtual void Init(const Json::Value& item) {
- interp_ = item["interp"].as<int>();
- // max_size_ = item["target_size"].as<int>();
- keep_ratio_ = item["keep_ratio"].as<bool>();
- target_size_.clear();
- for (auto tmp : item["target_size"]) {
- target_size_.emplace_back(tmp.as<int>());
- }
- }
- // Compute best resize scale for x-dimension, y-dimension
- std::pair<float, float> GenerateScale(const cv::Mat& im);
- virtual void Run(cv::Mat* im, ImageBlob* data);
- private:
- int interp_;
- bool keep_ratio_;
- std::vector<int> target_size_;
- std::vector<int> in_net_shape_;
- };
- // Models with FPN need input shape % stride == 0
- class PadStride : public PreprocessOp {
- public:
- virtual void Init(const Json::Value& item) {
- stride_ = item["stride"].as<int>();
- }
- virtual void Run(cv::Mat* im, ImageBlob* data);
- private:
- int stride_;
- };
- class TopDownEvalAffine : public PreprocessOp {
- public:
- virtual void Init(const Json::Value& item) {
- trainsize_.clear();
- for (auto tmp : item["trainsize"]) {
- trainsize_.emplace_back(tmp.as<int>());
- }
- }
- virtual void Run(cv::Mat* im, ImageBlob* data);
- private:
- int interp_ = 1;
- std::vector<int> trainsize_;
- };
- void CropImg(cv::Mat& img,
- cv::Mat& crop_img,
- std::vector<int>& area,
- std::vector<float>& center,
- std::vector<float>& scale,
- float expandratio = 0.15);
- class Preprocessor {
- public:
- void Init(const Json::Value& config_node) {
- // initialize image info at first
- ops_["InitInfo"] = std::make_shared<InitInfo>();
- for (const auto& item : config_node) {
- auto op_name = item["type"].as<std::string>();
- ops_[op_name] = CreateOp(op_name);
- ops_[op_name]->Init(item);
- }
- }
- std::shared_ptr<PreprocessOp> CreateOp(const std::string& name) {
- if (name == "Resize") {
- return std::make_shared<Resize>();
- } else if (name == "Permute") {
- return std::make_shared<Permute>();
- } else if (name == "NormalizeImage") {
- return std::make_shared<NormalizeImage>();
- } else if (name == "PadStride") {
- // use PadStride instead of PadBatch
- return std::make_shared<PadStride>();
- } else if (name == "TopDownEvalAffine") {
- return std::make_shared<TopDownEvalAffine>();
- }
- std::cerr << "can not find function of OP: " << name
- << " and return: nullptr" << std::endl;
- return nullptr;
- }
- void Run(cv::Mat* im, ImageBlob* data);
- public:
- static const std::vector<std::string> RUN_ORDER;
- private:
- std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
- };
- } // namespace PaddleDetection
|