简体中文 | English
有无sniper | GPU个数 | 每张GPU图片个数 | 骨架网络 | 数据集 | 学习率策略 | Box AP | 模型下载 | 配置文件 |
---|---|---|---|---|---|---|---|---|
w/o sniper | 4 | 1 | ResNet-r50-FPN | VisDrone | 1x | 23.3 | 下载链接 | 配置文件 |
w sniper | 4 | 1 | ResNet-r50-FPN | VisDrone | 1x | 29.7 | 下载链接 | 配置文件 |
VisDrone
数据集, 并且检查其中的9类,包括 person, bicycles, car, van, truck, tricyle, awning-tricyle, bus, motor
.a. 可选:统计数据集信息,获得数据缩放尺度、有效框范围、chip尺度和步长等参数,修改configs/datasets/sniper_coco_detection.yml中对应参数
python tools/sniper_params_stats.py FasterRCNN annotations/instances_train2017.json
b. 可选:训练检测器,生成负样本
python -m paddle.distributed.launch --log_dir=./sniper/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/sniper/faster_rcnn_r50_fpn_1x_sniper_visdrone.yml --save_proposals --proposals_path=./proposals.json &>sniper.log 2>&1 &
c. 训练模型
python -m paddle.distributed.launch --log_dir=./sniper/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/sniper/faster_rcnn_r50_fpn_1x_sniper_visdrone.yml --eval &>sniper.log 2>&1 &
使用单GPU通过如下命令一键式评估模型在COCO val2017数据集效果
# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/sniper/faster_rcnn_r50_fpn_1x_sniper_visdrone.yml -o weights=output/faster_rcnn_r50_fpn_1x_sniper_visdrone/model_final
使用单GPU通过如下命令一键式推理图像,通过--infer_img
指定图像路径,或通过--infer_dir
指定目录并推理目录下所有图像
# 推理单张图像
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/sniper/faster_rcnn_r50_fpn_1x_sniper_visdrone.yml -o weights=output/faster_rcnn_r50_fpn_1x_sniper_visdrone/model_final --infer_img=demo/P0861__1.0__1154___824.png
# 推理目录下所有图像
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/sniper/faster_rcnn_r50_fpn_1x_sniper_visdrone.yml -o weights=output/faster_rcnn_r50_fpn_1x_sniper_visdrone/model_final --infer_dir=demo
@misc{1805.09300,
Author = {Bharat Singh and Mahyar Najibi and Larry S. Davis},
Title = {SNIPER: Efficient Multi-Scale Training},
Year = {2018},
Eprint = {arXiv:1805.09300},
}
@ARTICLE{9573394,
author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Detection and Tracking Meet Drones Challenge},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2021.3119563}}