简体中文 | English
JDE(Joint Detection and Embedding)是在一个单一的共享神经网络中同时学习目标检测任务和embedding任务,并同时输出检测结果和对应的外观embedding匹配的算法。JDE原论文是基于Anchor Base的YOLOv3检测器新增加一个ReID分支学习embedding,训练过程被构建为一个多任务联合学习问题,兼顾精度和速度。
此外,PaddleDetection还提供了PP-Tracking实时多目标跟踪系统。PP-Tracking是基于PaddlePaddle深度学习框架的业界首个开源的实时多目标跟踪系统,具有模型丰富、应用广泛和部署高效三大优势。 PP-Tracking支持单镜头跟踪(MOT)和跨镜头跟踪(MTMCT)两种模式,针对实际业务的难点和痛点,提供了行人跟踪、车辆跟踪、多类别跟踪、小目标跟踪、流量统计以及跨镜头跟踪等各种多目标跟踪功能和应用,部署方式支持API调用和GUI可视化界面,部署语言支持Python和C++,部署平台环境支持Linux、NVIDIA Jetson等。
PP-Tracking 提供了AI Studio公开项目案例,教程请参考PP-Tracking之手把手玩转多目标跟踪。
骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
---|---|---|---|---|---|---|---|---|---|
DarkNet53 | 1088x608 | 72.0 | 66.9 | 1397 | 7274 | 22209 | - | 下载链接 | 配置文件 |
DarkNet53 | 864x480 | 69.1 | 64.7 | 1539 | 7544 | 25046 | - | 下载链接 | 配置文件 |
DarkNet53 | 576x320 | 63.7 | 64.4 | 1310 | 6782 | 31964 | - | 下载链接 | 配置文件 |
骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
---|---|---|---|---|---|---|---|---|---|
DarkNet53(paper) | 1088x608 | 64.4 | 55.8 | 1544 | - | - | - | - | - |
DarkNet53 | 1088x608 | 64.6 | 58.5 | 1864 | 10550 | 52088 | - | 下载链接 | 配置文件 |
DarkNet53(paper) | 864x480 | 62.1 | 56.9 | 1608 | - | - | - | - | - |
DarkNet53 | 864x480 | 63.2 | 57.7 | 1966 | 10070 | 55081 | - | 下载链接 | 配置文件 |
DarkNet53 | 576x320 | 59.1 | 56.4 | 1911 | 10923 | 61789 | - | 下载链接 | 配置文件 |
注意:
使用8GPU通过如下命令一键式启动训练
python -m paddle.distributed.launch --log_dir=./jde_darknet53_30e_1088x608/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml
使用8GPU通过如下命令一键式启动评估
# 使用PaddleDetection发布的权重
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=output/jde_darknet53_30e_1088x608/model_final.pdparams
注意:
默认评估的是MOT-16 Train Set数据集, 如需换评估数据集可参照以下代码修改configs/datasets/mot.yml
:
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video
跟踪结果会存于{output_dir}/mot_results/
中,里面每个视频序列对应一个txt,每个txt文件每行信息是frame,id,x1,y1,w,h,score,-1,-1,-1
, 此外{output_dir}
可通过--output_dir
设置。
使用单个GPU通过如下命令预测一个视频,并保存为视频
# 预测一个视频
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams --video_file={your video name}.mp4 --save_videos
注意:
apt-get update && apt-get install -y ffmpeg
。CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/jde_darknet53_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --save_mot_txts
注意:
--save_mot_txts
表示保存跟踪结果的txt文件,或--save_images
表示保存跟踪结果可视化图片。frame,id,x1,y1,w,h,score,-1,-1,-1
。@article{wang2019towards,
title={Towards Real-Time Multi-Object Tracking},
author={Wang, Zhongdao and Zheng, Liang and Liu, Yixuan and Wang, Shengjin},
journal={arXiv preprint arXiv:1909.12605},
year={2019}
}