123456789101112131415161718192021222324252627282930313233343536373839 |
- #!/usr/bin/env python3
- # -*- coding:utf-8 -*-
- # Copyright (c) Megvii, Inc. and its affiliates.
- import os
- import torch.nn as nn
- from yolox.exp import Exp as MyExp
- class Exp(MyExp):
- def __init__(self):
- super(Exp, self).__init__()
- self.depth = 0.33
- self.width = 0.25
- self.scale = (0.5, 1.5)
- self.random_size = (10, 20)
- self.test_size = (416, 416)
- self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
- self.enable_mixup = False
- def get_model(self, sublinear=False):
- def init_yolo(M):
- for m in M.modules():
- if isinstance(m, nn.BatchNorm2d):
- m.eps = 1e-3
- m.momentum = 0.03
- if "model" not in self.__dict__:
- from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead
- in_channels = [256, 512, 1024]
- # NANO model use depthwise = True, which is main difference.
- backbone = YOLOPAFPN(self.depth, self.width, in_channels=in_channels, depthwise=True)
- head = YOLOXHead(self.num_classes, self.width, in_channels=in_channels, depthwise=True)
- self.model = YOLOX(backbone, head)
- self.model.apply(init_yolo)
- self.model.head.initialize_biases(1e-2)
- return self.model
|