# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) import glob import numpy as np from PIL import Image from paddle import fluid from paddleslim.prune import Pruner from paddleslim.analysis import flops from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.eval_utils import parse_fetches from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode from ppdet.utils.visualizer import visualize_results import ppdet.utils.checkpoint as checkpoint from ppdet.data.reader import create_reader import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def get_save_image_name(output_dir, image_path): """ Get save image name from source image path. """ if not os.path.exists(output_dir): os.makedirs(output_dir) image_name = os.path.split(image_path)[-1] name, ext = os.path.splitext(image_name) return os.path.join(output_dir, "{}".format(name)) + ext def get_test_images(infer_dir, infer_img): """ Get image path list in TEST mode """ assert infer_img is not None or infer_dir is not None, \ "--infer_img or --infer_dir should be set" assert infer_img is None or os.path.isfile(infer_img), \ "{} is not a file".format(infer_img) assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) # infer_img has a higher priority if infer_img and os.path.isfile(infer_img): return [infer_img] images = set() infer_dir = os.path.abspath(infer_dir) assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) assert len(images) > 0, "no image found in {}".format(infer_dir) logger.info("Found {} inference images in total.".format(len(images))) return images def main(): cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() main_arch = cfg.architecture dataset = cfg.TestReader['dataset'] test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img) dataset.set_images(test_images) place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['TestReader']['inputs_def'] inputs_def['iterable'] = True feed_vars, loader = model.build_inputs(**inputs_def) test_fetches = model.test(feed_vars) infer_prog = infer_prog.clone(True) pruned_params = FLAGS.pruned_params assert ( FLAGS.pruned_params is not None ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option." pruned_params = FLAGS.pruned_params.strip().split(",") logger.info("pruned params: {}".format(pruned_params)) pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")] logger.info("pruned ratios: {}".format(pruned_ratios)) assert (len(pruned_params) == len(pruned_ratios) ), "The length of pruned params and pruned ratios should be equal." assert (pruned_ratios > [0] * len(pruned_ratios) and pruned_ratios < [1] * len(pruned_ratios) ), "The elements of pruned ratios should be in range (0, 1)." base_flops = flops(infer_prog) pruner = Pruner() infer_prog, _, _ = pruner.prune( infer_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=True) pruned_flops = flops(infer_prog) logger.info("pruned FLOPS: {}".format( float(base_flops - pruned_flops) / base_flops)) reader = create_reader(cfg.TestReader, devices_num=1) loader.set_sample_list_generator(reader, place) exe.run(startup_prog) if cfg.weights: checkpoint.load_checkpoint(exe, infer_prog, cfg.weights) # parse infer fetches assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \ "unknown metric type {}".format(cfg.metric) extra_keys = [] if cfg['metric'] in ['COCO', 'OID']: extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE': extra_keys = ['im_id', 'im_shape'] keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys) # parse dataset category if cfg.metric == 'COCO': from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info if cfg.metric == 'OID': from ppdet.utils.oid_eval import bbox2out, get_category_info if cfg.metric == "VOC": from ppdet.utils.voc_eval import bbox2out, get_category_info if cfg.metric == "WIDERFACE": from ppdet.utils.widerface_eval_utils import bbox2out, get_category_info anno_file = dataset.get_anno() with_background = dataset.with_background use_default_label = dataset.use_default_label clsid2catid, catid2name = get_category_info(anno_file, with_background, use_default_label) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() imid2path = dataset.get_imid2path() for iter_id, data in enumerate(loader()): outs = exe.run(infer_prog, feed=data, fetch_list=values, return_numpy=False) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(keys, outs) } logger.info('Infer iter {}'.format(iter_id)) bbox_results = None mask_results = None if 'bbox' in res: bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized) if 'mask' in res: mask_results = mask2out([res], clsid2catid, model.mask_head.resolution) # visualize result im_ids = res['im_id'][0] for im_id in im_ids: image_path = imid2path[int(im_id)] image = Image.open(image_path).convert('RGB') image = visualize_results(image, int(im_id), catid2name, FLAGS.draw_threshold, bbox_results, mask_results) save_name = get_save_image_name(FLAGS.output_dir, image_path) logger.info("Detection bbox results save in {}".format(save_name)) image.save(save_name, quality=95) if __name__ == '__main__': enable_static_mode() parser = ArgsParser() parser.add_argument( "--infer_dir", type=str, default=None, help="Directory for images to perform inference on.") parser.add_argument( "--infer_img", type=str, default=None, help="Image path, has higher priority over --infer_dir") parser.add_argument( "--output_dir", type=str, default="output", help="Directory for storing the output visualization files.") parser.add_argument( "--draw_threshold", type=float, default=0.5, help="Threshold to reserve the result for visualization.") parser.add_argument( "-p", "--pruned_params", default=None, type=str, help="The parameters to be pruned when calculating sensitivities.") parser.add_argument( "--pruned_ratios", default=None, type=str, help="The ratios pruned iteratively for each parameter when calculating sensitivities." ) FLAGS = parser.parse_args() main()