# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import print_function import six from paddle.fluid.framework import Parameter from paddle.fluid import layers from paddle.fluid import core from paddle.fluid import unique_name import paddle.fluid.layer_helper_base as lhb import paddle.fluid.optimizer as optim __all__ = [ 'mixed_precision_global_state', 'mixed_precision_context', 'StaticLossScale', 'DynamicLossScale' ] _mixed_precision_global_state = None def mixed_precision_global_state(): return _mixed_precision_global_state class LossScale(object): def __init__(self): super(LossScale, self).__init__() def get_loss_scale_var(self): return self.scale def increment(self): raise NotImplementedError() def decrement(self): raise NotImplementedError() class StaticLossScale(LossScale): """ Static (fixed) loss scale manager. Args: init_loss_scale (float): initial loss scale value. Examples: .. code-block:: python from paddle import fluid from ppdet.experimental import (mixed_precision_context, StaticLossScale) with mixed_precision_context(StaticLossScale(8.), True) as ctx: # ... # scale loss loss_scale = ctx.get_loss_scale_var() """ def __init__(self, init_loss_scale=1.): super(StaticLossScale, self).__init__() self.scale = layers.create_global_var( name=unique_name.generate("loss_scale"), shape=[1], value=init_loss_scale, dtype='float32', persistable=True) class DynamicLossScale(LossScale): """ Dynamic loss scale manager. it works as follows: if gradients is valid for `increment_every` steps, loss scale values is increased by `factor`, otherwise loss scale values is decreased by `factor` Args: init_loss_scale (float): initial loss scale value. increment_every (int): minimum 'good' steps before loss scale increase. factor (float): increase/decrease loss scale by this much. Examples: .. code-block:: python from paddle import fluid from ppdet.experimental import (mixed_precision_context, DynamicLossScale) loss_scale = DynamicLossScale(8., 1000, 4.) with mixed_precision_context(loss_scale, True) as ctx: # ... # scale loss loss_scale = ctx.get_loss_scale_var() """ def __init__(self, init_loss_scale=2**15, increment_every=2000, factor=2.): super(DynamicLossScale, self).__init__() self.scale = layers.create_global_var( name=unique_name.generate("loss_scale"), shape=[1], value=init_loss_scale, dtype='float32', persistable=True) self.good_steps = layers.create_global_var( name=unique_name.generate("good_steps"), shape=[1], value=0, dtype='int32', persistable=True) self.increment_every = layers.fill_constant( shape=[1], dtype='int32', value=increment_every) self.factor = factor def increment(self): enough_steps = layers.less_than(self.increment_every, self.good_steps + 1) def increment_step(): layers.increment(self.good_steps) def maybe_update(): new_scale = self.scale * self.factor scale_valid = layers.isfinite(new_scale) def update_scale_and_step(): layers.assign(new_scale, self.scale) layers.assign( layers.zeros_like(self.good_steps), self.good_steps) layers.cond(scale_valid, update_scale_and_step) layers.cond(enough_steps, maybe_update, increment_step) def decrement(self): new_scale = self.scale / self.factor one = layers.fill_constant(shape=[1], dtype='float32', value=1.0) layers.assign(layers.elementwise_max(new_scale, one), self.scale) layers.assign(layers.zeros_like(self.good_steps), self.good_steps) class mixed_precision_context(object): """ Context manager for mixed precision training. Args: loss_scale (float, str or obj): loss scale settings, can be: 1. an number: use fixed loss scale. 2. 'dynamic': use a default `DynamicLossScale`. 3. `DynamicLossScale` or `StaticLossScale` instance. enabled (bool): enable mixed precision training. Examples: .. code-block:: python from paddle import fluid from ppdet.experimental import mixed_precision_context with mixed_precision_context('dynamic', True) as ctx: # cast inputs to float16 inputs = fluid.layers.cast(inputs, "float16") # build model here logits = model(inputs) # use float32 for softmax logits = fluid.layers.cast(logits, "float32") softmax = fluid.layers.softmax(logits) loss = fluid.layers.cross_entropy(input=softmax, label=label) avg_loss = fluid.layers.mean(loss) # scale loss loss_scale = ctx.get_loss_scale_var() avg_loss *= loss_scale optimizer = fluid.optimizer.Momentum(...) optimizer.minimize(avg_loss) """ def __init__(self, loss_scale=1., enabled=True): super(mixed_precision_context, self).__init__() self.enabled = enabled if not enabled: return monkey_patch() if isinstance(loss_scale, six.integer_types + (float, )): self.loss_scale = StaticLossScale(loss_scale) elif loss_scale == 'dynamic': self.loss_scale = DynamicLossScale() else: assert isinstance(loss_scale, LossScale), \ "Invalid loss scale argument" self.loss_scale = loss_scale @property def dynamic_scaling(self): return isinstance(self.loss_scale, DynamicLossScale) def __getattr__(self, attr): if attr in ['get_loss_scale_var', 'increment', 'decrement']: return getattr(self.loss_scale, attr) def __enter__(self): if not self.enabled: return global _mixed_precision_global_state _mixed_precision_global_state = self return mixed_precision_global_state() def __exit__(self, *args): if not self.enabled: return global _mixed_precision_global_state _mixed_precision_global_state = None return mixed_precision_global_state() def create_parameter(self, attr, shape, dtype, is_bias=False, default_initializer=None): mp_state = mixed_precision_global_state() is_half = (isinstance(dtype, str) and dtype == 'float16') \ or (isinstance(dtype, core.VarDesc.VarType) and dtype == core.VarDesc.VarType.FP16) if is_half and mp_state is not None: dtype = 'float32' param = self._create_parameter(attr, shape, dtype, is_bias, default_initializer) if not is_half or mp_state is None: return param param16 = self.main_program.current_block().create_var( name=param.name + '.fp16', dtype='float16', type=param.type, persistable=False) self.append_op( type='cast', inputs={'X': [param]}, outputs={'Out': [param16]}, attrs={'in_dtype': param.dtype, 'out_dtype': param16.dtype}) return param16 def scale_gradient(block, context): state = mixed_precision_global_state() if state is None: return scale = state.get_loss_scale_var() op_desc = block.desc.op(block.desc.op_size() - 1) op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName() bwd_role = core.op_proto_and_checker_maker.OpRole.Backward for name in [n for n in op_desc.output_arg_names() if n in context]: fwd_var = block._var_recursive(context[name]) if not isinstance(fwd_var, Parameter): continue # TODO verify all use cases scale_op_desc = block.desc.append_op() scale_op_desc.set_type("elementwise_div") scale_op_desc.set_input("X", [name]) scale_op_desc.set_input("Y", [scale.name]) scale_op_desc.set_output("Out", [name]) scale_op_desc._set_attr("axis", -1) scale_op_desc._set_attr(op_role_attr_name, bwd_role) def update_loss_scale(grads): state = mixed_precision_global_state() if state is None or not state.dynamic_scaling: return per_grad_check = layers.stack([layers.reduce_sum(g) for g in grads]) grad_valid = layers.isfinite(per_grad_check) layers.cond(grad_valid, lambda: state.increment(), lambda: state.decrement()) return grad_valid def backward(self, loss, **kwargs): state = mixed_precision_global_state() callbacks = 'callbacks' in kwargs and kwargs['callbacks'] or None if callbacks is None: from paddle.fluid.clip import error_clip_callback callbacks = [error_clip_callback] # XXX what if gradient is zero? if state is not None: kwargs['callbacks'] = [scale_gradient] + callbacks else: kwargs['callbacks'] = callbacks param_grads = self._backward(loss, **kwargs) def zero_grad(): for _, g in param_grads: layers.assign(layers.zeros_like(g), g) if state is not None: grad_valid = update_loss_scale(v for k, v in param_grads) if state.dynamic_scaling: layers.cond(grad_valid, None, zero_grad) return param_grads mixed_precision_patched = False # XXX this is a temporary measure, until thoroughly evaluated def monkey_patch(): global mixed_precision_patched if mixed_precision_patched: return create_parameter_orig = lhb.LayerHelperBase.create_parameter lhb.LayerHelperBase.create_parameter = create_parameter lhb.LayerHelperBase._create_parameter = create_parameter_orig backward_orig = optim.Optimizer.backward optim.Optimizer.backward = backward optim.Optimizer._backward = backward_orig mixed_precision_patched = True