[English](README_en.md) | 简体中文 # 移动端模型库 ## 模型 PaddleDetection目前提供一系列针对移动应用进行优化的模型,主要支持以下结构: | 骨干网络 | 结构 | 输入大小 | 图片/gpu [1](#gpu) | 学习率策略 | Box AP | 下载 | PaddleLite模型下载 | | :----------------------- | :------------------------ | :---: | :--------------------: | :------------ | :----: | :--- | :----------------- | | MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.2 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_small.pdparams) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small.tar) | | MobileNetV3 Small | SSDLite Quant [2](#quant) | 320 | 64 | 400K (cosine) | 15.4 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_small_quant.tar) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small_quant.tar) | | MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 23.3 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_large.pdparams) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large.tar) | | MobileNetV3 Large | SSDLite Quant [2](#quant) | 320 | 64 | 400K (cosine) | 22.6 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_large_quant.tar) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large_quant.tar) | | MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_320.tar) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_320.tar) | | MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_640.tar) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_640.tar) | | MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3.tar) | | MobileNetV3 Large | YOLOv3 Prune [3](#prune) | 320 | 8 | - | 24.6 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/yolov3_mobilenet_v3_prune75875_FPGM_distillby_r34.pdparams) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3_prune86_FPGM_320.tar) | **注意**: - [1] 模型统一使用8卡训练。 - [2] 参考下面关于[SSDLite量化的说明](#SSDLite量化说明)。 - [3] 参考下面关于[YOLO剪裁的说明](#YOLOv3剪裁说明)。 ## 评测结果 - 模型使用 [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) 2.6 (即将发布) 在下列平台上进行了测试 - Qualcomm Snapdragon 625 - Qualcomm Snapdragon 835 - Qualcomm Snapdragon 845 - Qualcomm Snapdragon 855 - HiSilicon Kirin 970 - HiSilicon Kirin 980 - 单CPU线程 (单位: ms) | | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 | |------------------|---------|---------|---------|---------|-----------|-----------| | SSDLite Large | 289.071 | 134.408 | 91.933 | 48.2206 | 144.914 | 55.1186 | | SSDLite Large Quant | | | | | | | | SSDLite Small | 122.932 | 57.1914 | 41.003 | 22.0694 | 61.5468 | 25.2106 | | SSDLite Small Quant | | | | | | | | YOLOv3 baseline | 1082.5 | 435.77 | 317.189 | 155.948 | 536.987 | 178.999 | | YOLOv3 prune | 253.98 | 131.279 | 89.4124 | 48.2856 | 122.732 | 55.8626 | | Cascade RCNN 320 | 286.526 | 125.635 | 87.404 | 46.184 | 149.179 | 52.9994 | | Cascade RCNN 640 | 1115.66 | 495.926 | 351.361 | 189.722 | 573.558 | 207.917 | - 4 CPU线程 (单位: ms) | | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 | |------------------|---------|---------|---------|---------|-----------|-----------| | SSDLite Large | 107.535 | 51.1382 | 34.6392 | 20.4978 | 50.5598 | 24.5318 | | SSDLite Large Quant | | | | | | | | SSDLite Small | 51.5704 | 24.5156 | 18.5486 | 11.4218 | 24.9946 | 16.7158 | | SSDLite Small Quant | | | | | | | | YOLOv3 baseline | 413.486 | 184.248 | 133.624 | 75.7354 | 202.263 | 126.435 | | YOLOv3 prune | 98.5472 | 53.6228 | 34.4306 | 21.3112 | 44.0722 | 31.201 | | Cascade RCNN 320 | 131.515 | 59.6026 | 39.4338 | 23.5802 | 58.5046 | 36.9486 | | Cascade RCNN 640 | 473.083 | 224.543 | 156.205 | 100.686 | 231.108 | 138.391 | ## SSDLite量化说明 在SSDLite模型中我们采用完整量化训练的方式对模型进行训练,在8卡GPU下共训练40万轮,训练中将`res_conv1`与`se_block`固定不训练,执行指令为: ```shell python slim/quantization/train.py --not_quant_pattern res_conv1 se_block \ -c configs/ssd/ssdlite_mobilenet_v3_large.yml \ --eval ``` 更多量化教程请参考[模型量化压缩教程](../../docs/advanced_tutorials/slim/quantization/QUANTIZATION.md) ## YOLOv3剪裁说明 首先对YOLO检测头进行剪裁,然后再使用 YOLOv3-ResNet34 作为teacher网络对剪裁后的模型进行蒸馏, teacher网络在COCO上的mAP为31.4 (输入大小320\*320). 可以使用如下两种方式进行剪裁: - 固定比例剪裁, 整体剪裁率是86% ```shell --pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights" \ --pruned_ratios="0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.875,0.875,0.875,0.875,0.875,0.875" ``` - 使用 [FPGM](https://arxiv.org/abs/1811.00250) 算法剪裁: ```shell --prune_criterion=geometry_median ``` ## 敬请关注后续发布 - [ ] 更多模型 - [ ] 量化模型