architecture: EfficientDet max_iters: 281250 use_gpu: true pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar weights: output/efficientdet_d0/model_final log_iter: 20 snapshot_iter: 10000 metric: COCO save_dir: output num_classes: 81 use_ema: true ema_decay: 0.9998 EfficientDet: backbone: EfficientNet fpn: BiFPN efficient_head: EfficientHead anchor_grid: AnchorGrid box_loss_weight: 50. EfficientNet: # norm_type: sync_bn # TODO norm_type: bn scale: b0 use_se: true BiFPN: num_chan: 64 repeat: 3 levels: 5 EfficientHead: repeat: 3 num_chan: 64 prior_prob: 0.01 num_anchors: 9 gamma: 1.5 alpha: 0.25 delta: 0.1 output_decoder: score_thresh: 0.05 # originally 0. nms_thresh: 0.5 pre_nms_top_n: 1000 # originally 5000 detections_per_im: 100 nms_eta: 1.0 AnchorGrid: anchor_base_scale: 4 num_scales: 3 aspect_ratios: [[1, 1], [1.4, 0.7], [0.7, 1.4]] LearningRate: base_lr: 0.16 schedulers: - !CosineDecayWithSkip total_steps: 281250 skip_steps: 938 - !LinearWarmup start_factor: 0.05 steps: 938 OptimizerBuilder: clip_grad_by_norm: 10. optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.00004 type: L2 TrainReader: inputs_def: fields: ['image', 'im_id', 'fg_num', 'gt_label', 'gt_target'] dataset: !COCODataSet image_dir: train2017 anno_path: annotations/instances_train2017.json dataset_dir: dataset/coco sample_transforms: - !DecodeImage to_rgb: true - !RandomFlipImage prob: 0.5 - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !RandomScaledCrop target_dim: 512 scale_range: [.1, 2.] interp: 1 - !Permute to_bgr: false channel_first: true - !TargetAssign image_size: 512 batch_size: 16 shuffle: true worker_num: 32 bufsize: 16 use_process: true drop_empty: false EvalReader: inputs_def: fields: ['image', 'im_info', 'im_id'] dataset: !COCODataSet image_dir: val2017 anno_path: annotations/instances_val2017.json dataset_dir: dataset/coco sample_transforms: - !DecodeImage to_rgb: true with_mixup: false - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !ResizeAndPad target_dim: 512 interp: 1 - !Permute channel_first: true to_bgr: false drop_empty: false batch_size: 16 shuffle: false worker_num: 2 TestReader: inputs_def: fields: ['image', 'im_info', 'im_id'] image_shape: [3, 512, 512] dataset: !ImageFolder anno_path: annotations/instances_val2017.json sample_transforms: - !DecodeImage to_rgb: true with_mixup: false - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !ResizeAndPad target_dim: 512 interp: 1 - !Permute channel_first: true to_bgr: false batch_size: 16 shuffle: false