# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['GFL'] @register class GFL(BaseArch): """ Generalized Focal Loss network, see https://arxiv.org/abs/2006.04388 Args: backbone (object): backbone instance neck (object): 'FPN' instance head (object): 'GFLHead' instance """ __category__ = 'architecture' def __init__(self, backbone, neck, head='GFLHead'): super(GFL, self).__init__() self.backbone = backbone self.neck = neck self.head = head @classmethod def from_config(cls, cfg, *args, **kwargs): backbone = create(cfg['backbone']) kwargs = {'input_shape': backbone.out_shape} neck = create(cfg['neck'], **kwargs) kwargs = {'input_shape': neck.out_shape} head = create(cfg['head'], **kwargs) return { 'backbone': backbone, 'neck': neck, "head": head, } def _forward(self): body_feats = self.backbone(self.inputs) fpn_feats = self.neck(body_feats) head_outs = self.head(fpn_feats) if not self.training: im_shape = self.inputs['im_shape'] scale_factor = self.inputs['scale_factor'] bboxes, bbox_num = self.head.post_process(head_outs, im_shape, scale_factor) return bboxes, bbox_num else: return head_outs def get_loss(self, ): loss = {} head_outs = self._forward() loss_gfl = self.head.get_loss(head_outs, self.inputs) loss.update(loss_gfl) total_loss = paddle.add_n(list(loss.values())) loss.update({'loss': total_loss}) return loss def get_pred(self): bbox_pred, bbox_num = self._forward() output = {'bbox': bbox_pred, 'bbox_num': bbox_num} return output