from loguru import logger import torch import torch.backends.cudnn as cudnn from torch.nn.parallel import DistributedDataParallel as DDP from yolox.core import launch from yolox.exp import get_exp from yolox.utils import configure_nccl, fuse_model, get_local_rank, get_model_info, setup_logger from yolox.evaluators import MOTEvaluator import argparse import os import random import warnings import glob import motmetrics as mm from collections import OrderedDict from pathlib import Path def compare_dataframes(gts, ts): accs = [] names = [] for k, tsacc in ts.items(): if k in gts: logger.info('Comparing {}...'.format(k)) accs.append(mm.utils.compare_to_groundtruth(gts[k], tsacc, 'iou', distth=0.5)) names.append(k) else: logger.warning('No ground truth for {}, skipping.'.format(k)) return accs, names # evaluate MOTA results_folder = 'YOLOX_outputs/yolox_x_ablation/track_results' mm.lap.default_solver = 'lap' gt_type = '_val_half' #gt_type = '' print('gt_type', gt_type) gtfiles = glob.glob( os.path.join('datasets/mot/train', '*/gt/gt{}.txt'.format(gt_type))) print('gt_files', gtfiles) tsfiles = [f for f in glob.glob(os.path.join(results_folder, '*.txt')) if not os.path.basename(f).startswith('eval')] logger.info('Found {} groundtruths and {} test files.'.format(len(gtfiles), len(tsfiles))) logger.info('Available LAP solvers {}'.format(mm.lap.available_solvers)) logger.info('Default LAP solver \'{}\''.format(mm.lap.default_solver)) logger.info('Loading files.') gt = OrderedDict([(Path(f).parts[-3], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=1)) for f in gtfiles]) ts = OrderedDict([(os.path.splitext(Path(f).parts[-1])[0], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=-1.0)) for f in tsfiles]) mh = mm.metrics.create() accs, names = compare_dataframes(gt, ts) logger.info('Running metrics') metrics = ['recall', 'precision', 'num_unique_objects', 'mostly_tracked', 'partially_tracked', 'mostly_lost', 'num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations', 'mota', 'motp', 'num_objects'] summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True) # summary = mh.compute_many(accs, names=names, metrics=mm.metrics.motchallenge_metrics, generate_overall=True) # print(mm.io.render_summary( # summary, formatters=mh.formatters, # namemap=mm.io.motchallenge_metric_names)) div_dict = { 'num_objects': ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations'], 'num_unique_objects': ['mostly_tracked', 'partially_tracked', 'mostly_lost']} for divisor in div_dict: for divided in div_dict[divisor]: summary[divided] = (summary[divided] / summary[divisor]) fmt = mh.formatters change_fmt_list = ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations', 'mostly_tracked', 'partially_tracked', 'mostly_lost'] for k in change_fmt_list: fmt[k] = fmt['mota'] print(mm.io.render_summary(summary, formatters=fmt, namemap=mm.io.motchallenge_metric_names)) metrics = mm.metrics.motchallenge_metrics + ['num_objects'] summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True) print(mm.io.render_summary(summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names)) logger.info('Completed')