# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) sys.path.insert(0, parent_path) # ignore warning log import warnings warnings.filterwarnings('ignore') import paddle from ppdet.core.workspace import load_config, merge_config from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.engine import Trainer from ppdet.slim import build_slim_model from ppdet.utils.logger import setup_logger logger = setup_logger('export_model') def parse_args(): parser = ArgsParser() parser.add_argument( "--output_dir", type=str, default="output_inference", help="Directory for storing the output model files.") parser.add_argument( "--export_serving_model", type=bool, default=False, help="Whether to export serving model or not.") parser.add_argument( "--slim_config", default=None, type=str, help="Configuration file of slim method.") args = parser.parse_args() return args def run(FLAGS, cfg): # build detector trainer = Trainer(cfg, mode='test') # load weights if cfg.architecture in ['DeepSORT', 'ByteTrack']: trainer.load_weights_sde(cfg.det_weights, cfg.reid_weights) else: trainer.load_weights(cfg.weights) # export model trainer.export(FLAGS.output_dir) if FLAGS.export_serving_model: from paddle_serving_client.io import inference_model_to_serving model_name = os.path.splitext(os.path.split(cfg.filename)[-1])[0] inference_model_to_serving( dirname="{}/{}".format(FLAGS.output_dir, model_name), serving_server="{}/{}/serving_server".format(FLAGS.output_dir, model_name), serving_client="{}/{}/serving_client".format(FLAGS.output_dir, model_name), model_filename="model.pdmodel", params_filename="model.pdiparams") def main(): paddle.set_device("cpu") FLAGS = parse_args() cfg = load_config(FLAGS.config) # TODO: to be refined in the future if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn': FLAGS.opt['norm_type'] = 'bn' merge_config(FLAGS.opt) if FLAGS.slim_config: cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test') # FIXME: Temporarily solve the priority problem of FLAGS.opt merge_config(FLAGS.opt) check_config(cfg) check_gpu(cfg.use_gpu) check_version() run(FLAGS, cfg) if __name__ == '__main__': main()