# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import functools import collections import traceback import numpy as np import logging from ppdet.core.workspace import register, serializable from .parallel_map import ParallelMap from .transform.batch_operators import Gt2YoloTarget __all__ = ['Reader', 'create_reader'] logger = logging.getLogger(__name__) class Compose(object): def __init__(self, transforms, ctx=None): self.transforms = transforms self.ctx = ctx def __call__(self, data): ctx = self.ctx if self.ctx else {} for f in self.transforms: try: data = f(data, ctx) except Exception as e: stack_info = traceback.format_exc() logger.warning( "fail to map op [{}] with error: {} and stack:\n{}".format( f, e, str(stack_info))) raise e return data def _calc_img_weights(roidbs): """ calculate the probabilities of each sample """ imgs_cls = [] num_per_cls = {} img_weights = [] for i, roidb in enumerate(roidbs): img_cls = set([k for cls in roidbs[i]['gt_class'] for k in cls]) imgs_cls.append(img_cls) for c in img_cls: if c not in num_per_cls: num_per_cls[c] = 1 else: num_per_cls[c] += 1 for i in range(len(roidbs)): weights = 0 for c in imgs_cls[i]: weights += 1 / num_per_cls[c] img_weights.append(weights) # probabilities sum to 1 img_weights = img_weights / np.sum(img_weights) return img_weights def _has_empty(item): def empty(x): if isinstance(x, np.ndarray) and x.size == 0: return True elif isinstance(x, collections.Sequence) and len(x) == 0: return True else: return False if isinstance(item, collections.Sequence) and len(item) == 0: return True if item is None: return True if empty(item): return True return False def _segm(samples): assert 'gt_poly' in samples segms = samples['gt_poly'] if 'is_crowd' in samples: is_crowd = samples['is_crowd'] if len(segms) != 0: assert len(segms) == is_crowd.shape[0] gt_masks = [] valid = True for i in range(len(segms)): segm = segms[i] gt_segm = [] if 'is_crowd' in samples and is_crowd[i]: gt_segm.append([[0, 0]]) else: for poly in segm: if len(poly) == 0: valid = False break gt_segm.append(np.array(poly).reshape(-1, 2)) if (not valid) or len(gt_segm) == 0: break gt_masks.append(gt_segm) return gt_masks def batch_arrange(batch_samples, fields): def im_shape(samples, dim=3): # hard code assert 'h' in samples assert 'w' in samples if dim == 3: # RCNN, .. return np.array((samples['h'], samples['w'], 1), dtype=np.float32) else: # YOLOv3, .. return np.array((samples['h'], samples['w']), dtype=np.int32) arrange_batch = [] for samples in batch_samples: one_ins = () for i, field in enumerate(fields): if field == 'gt_mask': one_ins += (_segm(samples), ) elif field == 'im_shape': one_ins += (im_shape(samples), ) elif field == 'im_size': one_ins += (im_shape(samples, 2), ) else: if field == 'is_difficult': field = 'difficult' assert field in samples, '{} not in samples'.format(field) one_ins += (samples[field], ) arrange_batch.append(one_ins) return arrange_batch @register @serializable class Reader(object): """ Args: dataset (DataSet): DataSet object sample_transforms (list of BaseOperator): a list of sample transforms operators. batch_transforms (list of BaseOperator): a list of batch transforms operators. batch_size (int): batch size. shuffle (bool): whether shuffle dataset or not. Default False. drop_last (bool): whether drop last batch or not. Default False. drop_empty (bool): whether drop sample when it's gt is empty or not. Default True. mixup_epoch (int): mixup epoc number. Default is -1, meaning not use mixup. cutmix_epoch (int): cutmix epoc number. Default is -1, meaning not use cutmix. class_aware_sampling (bool): whether use class-aware sampling or not. Default False. worker_num (int): number of working threads/processes. Default -1, meaning not use multi-threads/multi-processes. use_process (bool): whether use multi-processes or not. It only works when worker_num > 1. Default False. bufsize (int): buffer size for multi-threads/multi-processes, please note, one instance in buffer is one batch data. memsize (str): size of shared memory used in result queue when use_process is true. Default 3G. inputs_def (dict): network input definition use to get input fields, which is used to determine the order of returned data. devices_num (int): number of devices. num_trainers (int): number of trainers. Default 1. """ def __init__(self, dataset=None, sample_transforms=None, batch_transforms=None, batch_size=1, shuffle=False, drop_last=False, drop_empty=True, mixup_epoch=-1, cutmix_epoch=-1, class_aware_sampling=False, worker_num=-1, use_process=False, use_fine_grained_loss=False, num_classes=80, bufsize=-1, memsize='3G', inputs_def=None, devices_num=1, num_trainers=1): self._dataset = dataset self._roidbs = self._dataset.get_roidb() self._fields = copy.deepcopy(inputs_def[ 'fields']) if inputs_def else None # transform self._sample_transforms = Compose(sample_transforms, {'fields': self._fields}) self._batch_transforms = None if use_fine_grained_loss: for bt in batch_transforms: if isinstance(bt, Gt2YoloTarget): bt.num_classes = num_classes elif batch_transforms: batch_transforms = [ bt for bt in batch_transforms if not isinstance(bt, Gt2YoloTarget) ] if batch_transforms: self._batch_transforms = Compose(batch_transforms, {'fields': self._fields}) # data if inputs_def and inputs_def.get('multi_scale', False): from ppdet.modeling.architectures.input_helper import multiscale_def im_shape = inputs_def[ 'image_shape'] if 'image_shape' in inputs_def else [ 3, None, None ] _, ms_fields = multiscale_def(im_shape, inputs_def['num_scales'], inputs_def['use_flip']) self._fields += ms_fields self._batch_size = batch_size self._shuffle = shuffle self._drop_last = drop_last self._drop_empty = drop_empty # sampling self._mixup_epoch = mixup_epoch // num_trainers self._cutmix_epoch = cutmix_epoch // num_trainers self._class_aware_sampling = class_aware_sampling self._load_img = False self._sample_num = len(self._roidbs) if self._class_aware_sampling: self.img_weights = _calc_img_weights(self._roidbs) self._indexes = None self._pos = -1 self._epoch = -1 self._curr_iter = 0 # multi-process self._worker_num = worker_num self._parallel = None if self._worker_num > -1: task = functools.partial(self.worker, self._drop_empty) bufsize = devices_num * 2 if bufsize == -1 else bufsize self._parallel = ParallelMap(self, task, worker_num, bufsize, use_process, memsize) def __call__(self): if self._worker_num > -1: return self._parallel else: return self def __iter__(self): return self def reset(self): """implementation of Dataset.reset """ if self._epoch < 0: self._epoch = 0 else: self._epoch += 1 self.indexes = [i for i in range(self.size())] if self._class_aware_sampling: self.indexes = np.random.choice( self._sample_num, self._sample_num, replace=True, p=self.img_weights) if self._shuffle: trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0)) np.random.seed(self._epoch + trainer_id) np.random.shuffle(self.indexes) if self._mixup_epoch > 0 and len(self.indexes) < 2: logger.debug("Disable mixup for dataset samples " "less than 2 samples") self._mixup_epoch = -1 if self._cutmix_epoch > 0 and len(self.indexes) < 2: logger.info("Disable cutmix for dataset samples " "less than 2 samples") self._cutmix_epoch = -1 self._pos = 0 def __next__(self): return self.next() def next(self): if self._epoch < 0: self.reset() if self.drained(): raise StopIteration batch = self._load_batch() self._curr_iter += 1 if self._drop_last and len(batch) < self._batch_size: raise StopIteration if self._worker_num > -1: return batch else: return self.worker(self._drop_empty, batch) def _load_batch(self): batch = [] bs = 0 while bs != self._batch_size: if self._pos >= self.size(): break pos = self.indexes[self._pos] sample = copy.deepcopy(self._roidbs[pos]) sample["curr_iter"] = self._curr_iter self._pos += 1 if self._drop_empty and self._fields and 'gt_bbox' in sample: if _has_empty(sample['gt_bbox']): #logger.warn('gt_bbox {} is empty or not valid in {}, ' # 'drop this sample'.format( # sample['im_file'], sample['gt_bbox'])) continue has_mask = 'gt_mask' in self._fields or 'gt_segm' in self._fields if self._drop_empty and self._fields and has_mask: if _has_empty(_segm(sample)): #logger.warn('gt_mask is empty or not valid in {}'.format( # sample['im_file'])) continue if self._load_img: sample['image'] = self._load_image(sample['im_file']) if self._epoch < self._mixup_epoch: num = len(self.indexes) mix_idx = np.random.randint(1, num) mix_idx = self.indexes[(mix_idx + self._pos - 1) % num] sample['mixup'] = copy.deepcopy(self._roidbs[mix_idx]) sample['mixup']["curr_iter"] = self._curr_iter if self._load_img: sample['mixup']['image'] = self._load_image(sample['mixup'][ 'im_file']) if self._epoch < self._cutmix_epoch: num = len(self.indexes) mix_idx = np.random.randint(1, num) sample['cutmix'] = copy.deepcopy(self._roidbs[mix_idx]) sample['cutmix']["curr_iter"] = self._curr_iter if self._load_img: sample['cutmix']['image'] = self._load_image(sample[ 'cutmix']['im_file']) batch.append(sample) bs += 1 return batch def worker(self, drop_empty=True, batch_samples=None): """ sample transform and batch transform. """ batch = [] for sample in batch_samples: sample = self._sample_transforms(sample) if drop_empty and 'gt_bbox' in sample: if _has_empty(sample['gt_bbox']): #logger.warn('gt_bbox {} is empty or not valid in {}, ' # 'drop this sample'.format( # sample['im_file'], sample['gt_bbox'])) continue batch.append(sample) if len(batch) > 0 and self._batch_transforms: batch = self._batch_transforms(batch) if len(batch) > 0 and self._fields: batch = batch_arrange(batch, self._fields) return batch def _load_image(self, filename): with open(filename, 'rb') as f: return f.read() def size(self): """ implementation of Dataset.size """ return self._sample_num def drained(self): """ implementation of Dataset.drained """ assert self._epoch >= 0, 'The first epoch has not begin!' return self._pos >= self.size() def stop(self): if self._parallel: self._parallel.stop() def create_reader(cfg, max_iter=0, global_cfg=None, devices_num=1, num_trainers=1): """ Return iterable data reader. Args: max_iter (int): number of iterations. """ if not isinstance(cfg, dict): raise TypeError("The config should be a dict when creating reader.") # synchornize use_fine_grained_loss/num_classes from global_cfg to reader cfg if global_cfg: cfg['use_fine_grained_loss'] = getattr(global_cfg, 'use_fine_grained_loss', False) cfg['num_classes'] = getattr(global_cfg, 'num_classes', 80) cfg['devices_num'] = devices_num cfg['num_trainers'] = num_trainers reader = Reader(**cfg)() def _reader(): n = 0 while True: for _batch in reader: if len(_batch) > 0: yield _batch n += 1 if max_iter > 0 and n == max_iter: return reader.reset() if max_iter <= 0: return return _reader