English | [简体中文](QUICK_STARTED_cn.md) # Quick Start In order to enable users to experience PaddleDetection and produce models in a short time, this tutorial introduces the pipeline to get a decent object detection model by finetuning on a small dataset in 10 minutes only. In practical applications, it is recommended that users select a suitable model configuration file for their specific demand. - **Set GPU** ```bash export CUDA_VISIBLE_DEVICES=0 ``` ## Inference Demo with Pre-trained Models ``` # predict an image using PP-YOLO python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o use_gpu=true weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=demo/000000014439.jpg ``` the result: ![](../images/000000014439.jpg) ## Data preparation The Dataset is [Kaggle dataset](https://www.kaggle.com/andrewmvd/road-sign-detection) ,including 877 images and 4 data categories: crosswalk, speedlimit, stop, trafficlight. The dataset is divided into training set (701 images) and test set (176 images),[download link](https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar). ``` # Note: this command could skip and # the dataset will be dowloaded automatically at the stage of training. python dataset/roadsign_voc/download_roadsign_voc.py ``` ## Training & Evaluation & Inference ### 1、Training ``` # It will takes about 10 minutes on 1080Ti and 1 hour on CPU # -c set configuration file # -o overwrite the settings in the configuration file # --eval Evaluate while training, and a model named best_model.pdmodel with the most evaluation results will be automatically saved python tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml --eval -o use_gpu=true ``` If you want to observe the loss change curve in real time through VisualDL, add --use_vdl=true to the training command, and set the log save path through --vdl_log_dir. **Note: VisualDL need Python>=3.5** Please install [VisualDL](https://github.com/PaddlePaddle/VisualDL) first ``` python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple ``` ``` python -u tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml \ --use_vdl=true \ --vdl_log_dir=vdl_dir/scalar \ --eval ``` View the change curve in real time through the visualdl command: ``` visualdl --logdir vdl_dir/scalar/ --host --port ``` ### 2、Evaluation ``` # Evaluate best_model by default # -c set config file # -o overwrite the settings in the configuration file python tools/eval.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true ``` The final mAP should be around 0.85. The dataset is small so the precision may vary a little after each training. ### 3、Inference ``` # -c set config file # -o overwrite the settings in the configuration file # --infer_img image path # After the prediction is over, an image of the same name with the prediction result will be generated in the output folder python tools/infer.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true --infer_img=demo/road554.png ``` The result is as shown below: ![](../images/road554.png)