# All rights `PaddleDetection` reserved #!/bin/bash model_dir=$1 model_name=$2 export img_dir="demo" export log_path="output_pipeline" echo "model_dir : ${model_dir}" echo "img_dir: ${img_dir}" # TODO: support batch size>1 for use_mkldnn in "True" "False"; do for threads in "1" "6"; do echo "${model_name} ${model_dir}, use_mkldnn: ${use_mkldnn} threads: ${threads}" python deploy/python/infer.py \ --model_dir=${model_dir} \ --run_benchmark True \ --enable_mkldnn=${use_mkldnn} \ --device=CPU \ --cpu_threads=${threads} \ --image_dir=${img_dir} 2>&1 | tee ${log_path}/${model_name}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_bs1_infer.log done done for run_mode in "fluid" "trt_fp32" "trt_fp16"; do echo "${model_name} ${model_dir}, run_mode: ${run_mode}" python deploy/python/infer.py \ --model_dir=${model_dir} \ --run_benchmark=True \ --device=GPU \ --run_mode=${run_mode} \ --image_dir=${img_dir} 2>&1 | tee ${log_path}/${model_name}_gpu_runmode_${run_mode}_bs1_infer.log done