# TOOD ## Introduction [TOOD: Task-aligned One-stage Object Detection](https://arxiv.org/abs/2108.07755) TOOD is an object detection model. We reproduced the model of the paper. ## Model Zoo | Backbone | Model | Images/GPU | Inf time (fps) | Box AP | Config | Download | |:------:|:--------:|:--------:|:--------------:|:------:|:------:|:--------:| | R-50 | TOOD | 4 | --- | 42.5 | [config](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/configs/tood/tood_r50_fpn_1x_coco.yml) | [model](https://paddledet.bj.bcebos.com/models/tood_r50_fpn_1x_coco.pdparams) | **Notes:** - TOOD is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`. - TOOD uses 8GPU to train 12 epochs. GPU multi-card training ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/tood/tood_r50_fpn_1x_coco.yml --fleet ``` ## Citations ``` @inproceedings{feng2021tood, title={TOOD: Task-aligned One-stage Object Detection}, author={Feng, Chengjian and Zhong, Yujie and Gao, Yu and Scott, Matthew R and Huang, Weilin}, booktitle={ICCV}, year={2021} } ```