|
@@ -0,0 +1,352 @@
|
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
|
+# @Time : 2022/8/1 9:02
|
|
|
|
+# @Author : MaochengHu
|
|
|
|
+# @Email : wojiaohumaocheng@gmail.com
|
|
|
|
+# @File : run_images.py
|
|
|
|
+# @Project : person_monitor
|
|
|
|
+import os
|
|
|
|
+
|
|
|
|
+from all_packages import *
|
|
|
|
+
|
|
|
|
+PRO_DIR = "/data2/humaocheng/person_monitor"
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def parse_args():
|
|
|
|
+ """
|
|
|
|
+ user can input config path by --config_path params
|
|
|
|
+ :return:
|
|
|
|
+ """
|
|
|
|
+ parser = argparse.ArgumentParser(description="video monitor")
|
|
|
|
+ parser.add_argument("--config_path", default=os.path.join(PRO_DIR, "dev/configs/config.py"),
|
|
|
|
+ help="config_files file")
|
|
|
|
+ args = parser.parse_args()
|
|
|
|
+ return args
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class Monitor(object):
|
|
|
|
+ """
|
|
|
|
+ This project is for monitoring folk actions. Now it can support these functions:
|
|
|
|
+ 1. Tracking Algorithm
|
|
|
|
+ [1] person number count
|
|
|
|
+ [2] person tracking
|
|
|
|
+ [3] person move direction
|
|
|
|
+ 2 Object Detection
|
|
|
|
+ [4] helmet detection
|
|
|
|
+ [5] sleep detection
|
|
|
|
+ [6] play/call phone detection
|
|
|
|
+ [7] person gathering
|
|
|
|
+ 3. Action Recognition Algorithm
|
|
|
|
+ [8] fall down action recognition
|
|
|
|
+ [9] jump action recognition
|
|
|
|
+ [10] walk action recognition
|
|
|
|
+ [11] run action recognition
|
|
|
|
+ [12] stand action recognition
|
|
|
|
+ """
|
|
|
|
+
|
|
|
|
+ def __init__(self, opt):
|
|
|
|
+ # load config file
|
|
|
|
+ self.opt = opt
|
|
|
|
+ self.config_path = opt.config_path
|
|
|
|
+ self.cfg = Config(self.config_path)
|
|
|
|
+ self.cfg.config_from_dict(vars(self.opt))
|
|
|
|
+ self.cfg.show_info()
|
|
|
|
+
|
|
|
|
+ # init predictor
|
|
|
|
+ self.kp_predictor = None
|
|
|
|
+ self.od_predictor = None
|
|
|
|
+ self.action_predictor = None
|
|
|
|
+
|
|
|
|
+ # init object detection predictor model
|
|
|
|
+ self.od_model_cfg = self.cfg.get("object_detection_model_config")
|
|
|
|
+ self.max_det = self.od_model_cfg["max_det"]
|
|
|
|
+ self.od_predictor = YoloV5Predictor(
|
|
|
|
+ data=self.od_model_cfg.get("data"),
|
|
|
|
+ pt_weigths=self.od_model_cfg["pt_weights"],
|
|
|
|
+ imgsz=self.od_model_cfg["imgsz"],
|
|
|
|
+ device=self.od_model_cfg["device"],
|
|
|
|
+ confthre=self.od_model_cfg["confthre"],
|
|
|
|
+ nmsthre=self.od_model_cfg["nmsthre"],
|
|
|
|
+ max_det=self.max_det
|
|
|
|
+ )
|
|
|
|
+ self.min_box_area = self.cfg.get("min_box_area")
|
|
|
|
+
|
|
|
|
+ # init person attribute detection predictor model
|
|
|
|
+ self.pa_model_cfg = self.cfg.get("person_attribute_model_config")
|
|
|
|
+ self.pa_predictor = YoloV5Predictor(
|
|
|
|
+ data=self.pa_model_cfg.get("data"),
|
|
|
|
+ pt_weigths=self.pa_model_cfg["pt_weights"],
|
|
|
|
+ imgsz=self.pa_model_cfg["imgsz"],
|
|
|
|
+ device=self.pa_model_cfg["device"],
|
|
|
|
+ confthre=self.pa_model_cfg["confthre"],
|
|
|
|
+ nmsthre=self.pa_model_cfg["nmsthre"]
|
|
|
|
+ )
|
|
|
|
+ self.attr_names = self.pa_predictor.opt.get("names")
|
|
|
|
+ self.attr_map = dict()
|
|
|
|
+ for attr_index, attr_names in enumerate(self.attr_names):
|
|
|
|
+ self.attr_map[attr_index] = attr_names
|
|
|
|
+ self.person_attr = self.cfg.get("person_attr")
|
|
|
|
+
|
|
|
|
+ # init tracker
|
|
|
|
+ self.timer = Timer()
|
|
|
|
+ self.tracker_frame_rate = self.cfg.get("tracker_frame_rate")
|
|
|
|
+ self.track_model_cfg = self.cfg.get("tracker_model_config")
|
|
|
|
+ self.tracker_args = self.cfg.get("tracker_args")
|
|
|
|
+ self.tracker = BYTETracker(args=self.tracker_args,
|
|
|
|
+ frame_rate=self.tracker_frame_rate)
|
|
|
|
+ self.output_side_size = self.cfg.get("output_side_size")
|
|
|
|
+ self.max_time_lost = self.tracker.max_time_lost
|
|
|
|
+ self.tracker_line_size = self.cfg.get("tracker_line_size")
|
|
|
|
+ self.tracker_max_id = self.cfg.get("tracker_max_id")
|
|
|
|
+
|
|
|
|
+ # init pose predictor model
|
|
|
|
+ self.pose_name = self.cfg.get("pose_name")
|
|
|
|
+ self.pose_model_platform = self.cfg.get("pose_model_platform")
|
|
|
|
+ self.keypoint_model_config = self.cfg.get("keypoint_model_config")
|
|
|
|
+ if self.pose_model_platform == "paddle":
|
|
|
|
+ self.kp_predictor = PaddlePosePredictor(
|
|
|
|
+ model_dir=self.keypoint_model_config.get("model_dir"),
|
|
|
|
+ device=self.keypoint_model_config.get("device"),
|
|
|
|
+ trt_calib_mode=self.keypoint_model_config.get("trt_calib_mode"),
|
|
|
|
+ run_mode=self.keypoint_model_config.get("run_mode"),
|
|
|
|
+ enable_mkldnn=self.keypoint_model_config.get("enable_mkldnn"),
|
|
|
|
+ batch_size=self.keypoint_model_config.get("batch_size"),
|
|
|
|
+ threshold=self.keypoint_model_config.get("threshold")
|
|
|
|
+ )
|
|
|
|
+ elif self.pose_model_platform == "mmpose":
|
|
|
|
+ self.kp_predictor = MMPosePredictor(
|
|
|
|
+ pose_config=self.keypoint_model_config.get("model_config_path"),
|
|
|
|
+ deploy_config=self.keypoint_model_config.get("deploy_config"),
|
|
|
|
+ checkpoint=self.keypoint_model_config.get("checkpoint"),
|
|
|
|
+ device=self.keypoint_model_config.get("device")
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ # init action predictor model
|
|
|
|
+ self.action_model_config = self.cfg.get("action_model_config")
|
|
|
|
+ self.save_kp_npy = self.action_model_config.get("save_kp_npy")
|
|
|
|
+ self.npy_output_dir = self.action_model_config.get("npy_output_dir")
|
|
|
|
+ self.pkl_list = None
|
|
|
|
+ if self.save_kp_npy:
|
|
|
|
+ self.pkl_list = []
|
|
|
|
+ self.action_predictor = SkeletonActionPredictor(
|
|
|
|
+ model_config_path=self.action_model_config.get("model_config_path"),
|
|
|
|
+ label_path=self.action_model_config.get("action_label"),
|
|
|
|
+ checkpoint=self.action_model_config.get("checkpoint"),
|
|
|
|
+ device=self.action_model_config.get("device"),
|
|
|
|
+ item_max_size=self.action_model_config.get("item_max_size"),
|
|
|
|
+ save_kp_npy=self.save_kp_npy,
|
|
|
|
+ npy_outptut_dir=self.npy_output_dir,
|
|
|
|
+ dataset_format=self.action_model_config.get("dataset_format")
|
|
|
|
+ )
|
|
|
|
+ self.crop = Crop()
|
|
|
|
+
|
|
|
|
+ # init cluster predictor model
|
|
|
|
+ self.eps = self.cfg.get("eps")
|
|
|
|
+ self.min_samples = self.cfg.get("min_samples")
|
|
|
|
+ self.cluster_predictor = ClusterPredictor(eps=self.eps, min_samples=self.min_samples)
|
|
|
|
+
|
|
|
|
+ # init recorder
|
|
|
|
+ self.use_keypoint = self.cfg.get("use_keypoint")
|
|
|
|
+ if not self.use_keypoint:
|
|
|
|
+ self.crop_frame = True
|
|
|
|
+ else:
|
|
|
|
+ self.crop_frame = False
|
|
|
|
+ self.recoder = Recoder(output_side_size=self.output_side_size, item_max_size=self.cfg.get("item_max_size"),
|
|
|
|
+ crop_frame=self.crop_frame, tracker_line_size=self.tracker_line_size,
|
|
|
|
+ max_det=self.max_det, tracker_max_id=self.tracker_max_id)
|
|
|
|
+
|
|
|
|
+ # init input
|
|
|
|
+ self.input_source = self.cfg.get("input_source")
|
|
|
|
+ # init opencv video
|
|
|
|
+ self.save_result = self.cfg.get("save_result")
|
|
|
|
+ self.opencv_component = OpencvComponent(input_source=self.input_source, save_video=self.save_result)
|
|
|
|
+
|
|
|
|
+ # limited area warning
|
|
|
|
+ self.limited_area = self.cfg.get("limited_area")
|
|
|
|
+ self.limited_area_predictor = LimitedAreaPredictor(self.limited_area)
|
|
|
|
+
|
|
|
|
+ # init visualize
|
|
|
|
+ self.save_id_times = dict()
|
|
|
|
+ self.save_id_action_dict = dict()
|
|
|
|
+ self.show_result = self.cfg.get("show_result")
|
|
|
|
+ self.show_config = self.cfg.get("show_config")
|
|
|
|
+ self.draw_point_num = self.show_config.get("draw_point_num") # 需要画出跟踪线长短
|
|
|
|
+ self.visualize = Visualize(id_max=self.tracker_max_id, person_attr=self.person_attr,
|
|
|
|
+ attr_map=self.attr_map, draw_point_num=self.draw_point_num)
|
|
|
|
+ self.kps_threshold = self.show_config.get("kps_threshold")
|
|
|
|
+
|
|
|
|
+ def run(self):
|
|
|
|
+
|
|
|
|
+ """
|
|
|
|
+ run video monitor
|
|
|
|
+ :return:
|
|
|
|
+ """
|
|
|
|
+ # ret = True
|
|
|
|
+ # cap = self.opencv_component.cap
|
|
|
|
+ # while ret:
|
|
|
|
+ # ret, frame = cap.read()
|
|
|
|
+ # frame_id += 1
|
|
|
|
+ # # if frame_id % 3 == 0 or frame_id % 3 == 1:
|
|
|
|
+ # # cv2.imshow("demo", frame)
|
|
|
|
+ # # continue
|
|
|
|
+ # if not ret:
|
|
|
|
+ # if self.save_result:
|
|
|
|
+ # self.opencv_component.video_writer.release()
|
|
|
|
+ #
|
|
|
|
+ # if self.save_kp_npy:
|
|
|
|
+ # with open("{}/{}".format(self.npy_output_dir, "result.npy"), 'wb') as pkl_file:
|
|
|
|
+ # pickle.dump(self.pkl_list, pkl_file)
|
|
|
|
+ # return
|
|
|
|
+
|
|
|
|
+ frame_id = 0
|
|
|
|
+ image_dir = "/data2/humaocheng/person_monitor/images"
|
|
|
|
+ for image_name in os.listdir(image_dir):
|
|
|
|
+ image_path = os.path.join(image_dir, image_name)
|
|
|
|
+ frame = cv2.imread(image_path)
|
|
|
|
+
|
|
|
|
+ online_person_xyxy = []
|
|
|
|
+ online_ids = []
|
|
|
|
+ online_scores = []
|
|
|
|
+ online_kps = []
|
|
|
|
+ attrs = []
|
|
|
|
+ tracker_center_dict = None
|
|
|
|
+ cluster_bbox = None
|
|
|
|
+ self.timer.tic()
|
|
|
|
+ limited_area_bool = False
|
|
|
|
+
|
|
|
|
+ # The First stage: object detection prediction, the first stage for person detection
|
|
|
|
+ person_coor, frame_info, img_shape = self.od_predictor.predict(frame)
|
|
|
|
+
|
|
|
|
+ # tracker prediction
|
|
|
|
+ online_targets = self.tracker.update(person_coor, [frame_info['height'], frame_info['width']],
|
|
|
|
+ img_shape[1:])
|
|
|
|
+
|
|
|
|
+ for t in online_targets:
|
|
|
|
+ ltwh = t.tlwh
|
|
|
|
+ tid = t.track_id
|
|
|
|
+ vertical = ltwh[2] / ltwh[3] > 1.6
|
|
|
|
+ if ltwh[2] * ltwh[3] > self.min_box_area and not vertical:
|
|
|
|
+ online_person_xyxy.append(bbox_xywh2xyxy(ltwh))
|
|
|
|
+ online_ids.append(tid)
|
|
|
|
+ online_scores.append(t.score)
|
|
|
|
+
|
|
|
|
+ if len(online_person_xyxy) > 0:
|
|
|
|
+ tracker_center_dict = boxes_center_coor(online_person_xyxy, online_ids) # get bboxes center coordinate
|
|
|
|
+ # doing dbscan cluster by bounding box center coordinate
|
|
|
|
+ cluster_bbox = self.cluster_predictor.predict(online_person_xyxy=online_person_xyxy,
|
|
|
|
+ tracker_center_dict=tracker_center_dict)
|
|
|
|
+ limited_area_bool = self.limited_area_predictor.predict(tracker_center_dict)
|
|
|
|
+
|
|
|
|
+ # The Second stage: attribute prediction(can detect person stage and helmet state)
|
|
|
|
+ if len(online_person_xyxy) > 0:
|
|
|
|
+ padding_crop_images, resize_info_list = self.crop.yolo_input_resize(frame, online_person_xyxy,
|
|
|
|
+ online_ids)
|
|
|
|
+
|
|
|
|
+ attrs, _, _ = self.pa_predictor.predict(padding_crop_images, scaleFill=True,
|
|
|
|
+ resize_info_list=resize_info_list)
|
|
|
|
+
|
|
|
|
+ id_attrs = dict()
|
|
|
|
+
|
|
|
|
+ for attr in attrs:
|
|
|
|
+ id = attr.get("id")
|
|
|
|
+ id_attrs[id] = attr
|
|
|
|
+
|
|
|
|
+ attrs_list = []
|
|
|
|
+ for online_id in online_ids:
|
|
|
|
+ attrs_list.append(id_attrs.get(online_id))
|
|
|
|
+
|
|
|
|
+ # pose recognition prediction
|
|
|
|
+ if self.use_keypoint:
|
|
|
|
+ if len(online_person_xyxy) != 0:
|
|
|
|
+ online_kps = self.kp_predictor.predict(frame=frame, bboxes=online_person_xyxy)
|
|
|
|
+
|
|
|
|
+ # record
|
|
|
|
+ state, return_items = self.recoder.update(frame=frame,
|
|
|
|
+ ids=online_ids,
|
|
|
|
+ person_bboxes=online_person_xyxy,
|
|
|
|
+ kps=online_kps,
|
|
|
|
+ attrs=attrs_list,
|
|
|
|
+ trackers=tracker_center_dict
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ if state: # state True -> start action recognition
|
|
|
|
+ # action recognition prediction
|
|
|
|
+ action_results, kp_dict_list = self.action_predictor.predict(return_items, frame_id)
|
|
|
|
+
|
|
|
|
+ for action_result in action_results:
|
|
|
|
+ self.recoder.saver[action_result.id].action = action_result
|
|
|
|
+ self.recoder.saver[action_result.id].frame.delete()
|
|
|
|
+
|
|
|
|
+ if self.pkl_list is not None and self.save_kp_npy:
|
|
|
|
+ for kp_dict in kp_dict_list:
|
|
|
|
+ self.pkl_list.append(kp_dict)
|
|
|
|
+
|
|
|
|
+ # get action label
|
|
|
|
+ _actions = self.action_predictor.get_actions(recoder=self.recoder, ids=online_ids)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ # delete old action label
|
|
|
|
+ actions = []
|
|
|
|
+ for id, action in zip(online_ids, _actions):
|
|
|
|
+ if action is None:
|
|
|
|
+ if id not in self.save_id_times:
|
|
|
|
+ self.save_id_times[id] = 1
|
|
|
|
+ self.save_id_action_dict[id] = None
|
|
|
|
+ else:
|
|
|
|
+ # keep some time to display action state, if it exceed lost time, it will be delete
|
|
|
|
+ if self.save_id_times[id] > self.max_time_lost * 3:
|
|
|
|
+ self.save_id_times.pop(id)
|
|
|
|
+ self.save_id_action_dict.pop(id)
|
|
|
|
+ actions.append(None)
|
|
|
|
+ continue
|
|
|
|
+ else:
|
|
|
|
+ self.save_id_times[id] += 1
|
|
|
|
+ if id in self.save_id_action_dict.keys():
|
|
|
|
+ action = self.save_id_action_dict[id]
|
|
|
|
+ else:
|
|
|
|
+ self.save_id_action_dict[id] = action
|
|
|
|
+ actions.append(action)
|
|
|
|
+
|
|
|
|
+ for return_item in return_items:
|
|
|
|
+ del_id = return_item.id
|
|
|
|
+ self.recoder.saver.pop(del_id)
|
|
|
|
+
|
|
|
|
+ self.timer.toc()
|
|
|
|
+ fps = 1. / self.timer.average_time
|
|
|
|
+
|
|
|
|
+ if self.show_result:
|
|
|
|
+ result = self.visualize.plot_result(frame=frame,
|
|
|
|
+ frame_id=frame_id,
|
|
|
|
+ fps=fps,
|
|
|
|
+ attrs=attrs,
|
|
|
|
+ ids=online_ids,
|
|
|
|
+ person_bboxes=online_person_xyxy,
|
|
|
|
+ kps=online_kps,
|
|
|
|
+ actions=actions,
|
|
|
|
+ kps_threshold=self.kps_threshold,
|
|
|
|
+ return_image=True,
|
|
|
|
+ tracker_center_dict_list=self.recoder.tracker_queue.tracker_list,
|
|
|
|
+ tracker_direction=self.recoder.tracker_queue.direction,
|
|
|
|
+ cluster_bbox=cluster_bbox,
|
|
|
|
+ limited_area=self.limited_area,
|
|
|
|
+ limited_area_bool=limited_area_bool
|
|
|
|
+
|
|
|
|
+ )
|
|
|
|
+ if self.save_result:
|
|
|
|
+ self.opencv_component.video_writer.write(result)
|
|
|
|
+
|
|
|
|
+ k = cv2.waitKey(1)
|
|
|
|
+ if k & 0xff == ord('q'):
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def main():
|
|
|
|
+ """
|
|
|
|
+ main function
|
|
|
|
+ """
|
|
|
|
+ opt = parse_args()
|
|
|
|
+ monitor = Monitor(opt)
|
|
|
|
+ monitor.run()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == "__main__":
|
|
|
|
+ main()
|