Maocheng Hu 46b2185aee second commit | 3 年 前 | |
---|---|---|
.. | ||
LaTeX | 3 年 前 | |
chamfer_distance | 3 年 前 | |
data | 3 年 前 | |
jittor_code | 3 年 前 | |
model | 3 年 前 | |
README.md | 3 年 前 | |
basic_ops.py | 3 年 前 | |
config.yml | 3 年 前 | |
dataloader.py | 3 年 前 | |
forward.py | 3 年 前 | |
hungarian_matching.py | 3 年 前 | |
logger.py | 3 年 前 | |
metric.py | 3 年 前 | |
pipeline.png | 3 年 前 | |
test_nkl.py | 3 年 前 | |
test_sel.py | 3 年 前 | |
train.py | 3 年 前 | |
utils.py | 3 年 前 |
Code accompanying the paper "Deep Hough Transform for Semantic Line Detection" (ECCV 2020, PAMI 2021). arXiv2003.04676 | Online Demo | Project page | New dataset | Line Annotator
numpy
scipy
opencv-python
scikit-image
pytorch>=1.0
torchvision
tqdm
yml
POT
deep-hough
To install deep-hough, run the following commands.
cd deep-hough-transform
cd model/_cdht
python setup.py build
python setup.py install --user
Pretrain model (based on ResNet50-FPN): http://data.kaizhao.net/projects/deep-hough-transform/dht_r50_fpn_sel-c9a29d40.pth (SEL dataset) and http://data.kaizhao.net/projects/deep-hough-transform/dht_r50_nkl_d97b97138.pth (NKL dataset / used in online demo)
Download original SEL dataset from here and extract to data/
directory. After that, the directory structure should be like:
data
├── ICCV2017_JTLEE_gtlines_all
├── ICCV2017_JTLEE_gt_pri_lines_for_test
├── ICCV2017_JTLEE_images
├── prepare_data_JTLEE.py
├── Readme.txt
├── test_idx_1716.txt
└── train_idx_1716.txt
Then run python script to generate parametric space label.
cd deep-hough-transfrom
python data/prepare_data_JTLEE.py --root './data/ICCV2017_JTLEE_images/' --label './data/ICCV2017_JTLEE_gtlines_all' --save-dir './data/training/JTLEE_resize_100_100/' --list './data/training/JTLEE.lst' --prefix 'JTLEE_resize_100_100' --fixsize 400 --numangle 100 --numrho 100
For NKL dataset, you can download the dataset and put it to data dir. Then run python script to generate parametric space label.
cd deep-hough-transform
python data/prepare_data_NKL.py --root './data/NKL' --label './data/NKL' --save-dir './data/training/NKL_resize_100_100' --fixsize 400
Following the default config file 'config.yml', you can arbitrarily modify hyperparameters. Then, run the following command.
python train.py
Generate visualization results and save coordinates to _.npy file.
CUDA_VISIBLE_DEVICES=0 python forward.py --model (your_best_model.pth) --tmp (your_result_save_dir)
Test the EA-score on SEL dataset. After forwarding the model and get the coordinates files. Run the following command to produce EA-score.
python test_sel.py --pred result/debug/visualize_test/(change to your own path which includes _.npy files) --gt gt_path/include_txt
For NKL dataset, run the follwoing command.
python test_nkl.py --pred result/debug/visualiza_test/(change to your own path which includes _.npy files) --gt gt_path/include_txt
If you want to evaluate on other metrics such as CD and EMD, please change the evaluation function in metric.py
If our method/dataset are useful to your research, please consider to cite us:
@article{zhao2021deep,
author = {Kai Zhao and Qi Han and Chang-bin Zhang and Jun Xu and Ming-ming Cheng},
title = {Deep Hough Transform for Semantic Line Detection},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year = {2021},
doi = {10.1109/TPAMI.2021.3077129}
}
@inproceedings{eccv2020line,
title={Deep Hough Transform for Semantic Line Detection},
author={Qi Han and Kai Zhao and Jun Xu and Ming-Ming Cheng},
booktitle={ECCV},
pages={750--766},
year={2020}
}
This project is licensed under the Creative Commons NonCommercial (CC BY-NC 3.0) license where only non-commercial usage is allowed. For commercial usage, please contact us.