123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- import torch.nn as nn
- import math
- import torch.utils.model_zoo as model_zoo
- import torch
- import torch.nn.functional as F
- __all__ = ['Res2Net', 'res2net50']
- class Bottle2neck(nn.Module):
- expansion = 4
- def __init__(self, inplanes, planes, stride=1, downsample=None, baseWidth=26, scale = 4, stype='normal'):
- """ Constructor
- Args:
- inplanes: input channel dimensionality
- planes: output channel dimensionality
- stride: conv stride. Replaces pooling layer.
- downsample: None when stride = 1
- baseWidth: basic width of conv3x3
- scale: number of scale.
- type: 'normal': normal set. 'stage': first block of a new stage.
- """
- super(Bottle2neck, self).__init__()
- width = int(math.floor(planes * (baseWidth/64.0)))
- self.conv1 = nn.Conv2d(inplanes, width*scale, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(width*scale)
-
- if scale == 1:
- self.nums = 1
- else:
- self.nums = scale -1
- if stype == 'stage':
- self.pool = nn.AvgPool2d(kernel_size=3, stride = stride, padding=1)
- convs = []
- bns = []
- for i in range(self.nums):
- convs.append(nn.Conv2d(width, width, kernel_size=3, stride = stride, padding=1, bias=False))
- bns.append(nn.BatchNorm2d(width))
- self.convs = nn.ModuleList(convs)
- self.bns = nn.ModuleList(bns)
- self.conv3 = nn.Conv2d(width*scale, planes * self.expansion, kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stype = stype
- self.scale = scale
- self.width = width
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- spx = torch.split(out, self.width, 1)
- for i in range(self.nums):
- if i==0 or self.stype=='stage':
- sp = spx[i]
- else:
- sp = sp + spx[i]
- sp = self.convs[i](sp)
- sp = self.relu(self.bns[i](sp))
- if i==0:
- out = sp
- else:
- out = torch.cat((out, sp), 1)
- if self.scale != 1 and self.stype=='normal':
- out = torch.cat((out, spx[self.nums]),1)
- elif self.scale != 1 and self.stype=='stage':
- out = torch.cat((out, self.pool(spx[self.nums])),1)
- out = self.conv3(out)
- out = self.bn3(out)
- if self.downsample is not None:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class Res2Net(nn.Module):
- def __init__(self, block, layers, baseWidth = 26, scale = 4, num_classes=1000):
- self.inplanes = 64
- super(Res2Net, self).__init__()
- self.baseWidth = baseWidth
- self.scale = scale
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
- self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0)
- self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
- self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
- self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)
- self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
- self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
- self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
-
- self._load_pretrained_model()
- def _make_layer(self, block, planes, blocks, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion,
- kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(planes * block.expansion),
- )
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample=downsample,
- stype='stage', baseWidth = self.baseWidth, scale=self.scale))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks):
- layers.append(block(self.inplanes, planes, baseWidth = self.baseWidth, scale=self.scale))
- return nn.Sequential(*layers)
- def forward(self, input):
- # Bottom-up
- x = self.conv1(input)
- x = self.bn1(x)
- x = self.relu(x)
- c1 = self.maxpool(x)
- c2 = self.layer1(c1) # x4
- c3 = self.layer2(c2) #x8
- c4 = self.layer3(c3) #x16
- c5 = self.layer4(c4) #x32
- # Top-down
- p5 = self.toplayer(c5)
- p4 = nn.functional.upsample(p5, size=c4.size()[2:], mode='bilinear') + self.latlayer1(c4)
- p3 = nn.functional.upsample(p4, size=c3.size()[2:], mode='bilinear') + self.latlayer2(c3)
- p2 = nn.functional.upsample(p3, size=c2.size()[2:], mode='bilinear') + self.latlayer3(c2)
-
- p4 = self.smooth1(p4)
- p3 = self.smooth2(p3)
- p2 = self.smooth3(p2)
-
- return p2, p3, p4, p5
- def _load_pretrained_model(self):
-
- pretrain_dict = model_zoo.load_url('https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_26w_4s-06e79181.pth')
- model_dict = {}
- state_dict = self.state_dict()
- for k, v in pretrain_dict.items():
- if k in state_dict:
- model_dict[k] = v
- state_dict.update(model_dict)
- self.load_state_dict(state_dict)
- def res2net50_FPN(pretrained=True, **kwargs):
- """Constructs a Res2Net-50 model.
- Res2Net-50 refers to the Res2Net-50_26w_4s.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = Res2Net(Bottle2neck, [3, 4, 6, 3], baseWidth = 26, scale = 4, **kwargs)
-
- return model
|