123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- import torch
- import numpy as np
- import apex
- if True:
- print("using setup tools")
- import syncbn
- else:
- print("using jit")
- from torch.utils.cpp_extension import load
- syncbn = load(name='syncbn', sources=['../../csrc/syncbn.cpp', '../../csrc/welford.cu'])
- def compare(desc, inp1, inp2, error):
- a = inp1.clone().detach().cpu().numpy()
- b = inp2.clone().detach().cpu().numpy()
- close = np.allclose(a,b, error, error)
- if not close:
- print(desc, close)
- z = a - b
- index = (np.abs(z) >= error + error * np.abs(b)).nonzero()
- print("dif : ", z[index])
- print("inp1 : ", a[index])
- print("inp2 : ", b[index])
- return close
- feature_size = 10
- space_size = 16
- batch_size = 5
- error = 1e-5
- np.random.seed(1)
- dtype = np.float32
- inp = (np.random.randn(batch_size, feature_size, space_size, space_size)).astype(dtype)
- grad = (np.random.randn(batch_size, feature_size, space_size, space_size)).astype(dtype)
- weight = (np.random.randn(feature_size)).astype(dtype)
- bias = (np.random.randn(feature_size)).astype(dtype)
- count = torch.cuda.IntTensor([batch_size*space_size**2])
- type_tensor = torch.cuda.FloatTensor
- ref_tensor = torch.cuda.DoubleTensor
- inp_t = type_tensor(inp)
- weight_t = type_tensor(weight)
- bias_t = type_tensor(bias)
- inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1))
- inp2_r = ref_tensor(inp)
- weight_r = ref_tensor(weight).view(-1, 1, 1)
- bias_r = ref_tensor(bias).view(-1, 1, 1)
- grad_output_t = type_tensor(grad)
- m = inp_r.mean(1)
- b_v = inp_r.var(1, unbiased=False)
- unb_v = inp_r.var(1, unbiased=True)
- eps = 1e-5
- #mean, var, var_biased = syncbn.welford_mean_var(inp_t)
- mean, var_biased = syncbn.welford_mean_var(inp_t)
- inv_std = 1.0 / torch.sqrt(var_biased + eps)
- bn = torch.nn.BatchNorm2d(feature_size).cuda()
- bn.momentum = 1.0
- bn.weight.data = weight_t.clone()
- bn.bias.data = bias_t.clone()
- inp_bn = inp_t.clone().requires_grad_()
- grad_bn = grad_output_t.clone().detach()
- out_bn = bn(inp_bn)
- out_bn.backward(grad_bn)
- sbn = apex.parallel.SyncBatchNorm(feature_size).cuda()
- sbn.momentum = 1.0
- sbn.weight.data = weight_t.clone()
- sbn.bias.data = bias_t.clone()
- inp_sbn = inp_t.clone().requires_grad_()
- grad_sbn = grad_output_t.clone().detach()
- out_sbn = sbn(inp_sbn)
- out_sbn.backward(grad_sbn)
- sbn_c_last = apex.parallel.SyncBatchNorm(feature_size, channel_last=True).cuda()
- sbn_c_last.momentum = 1.0
- sbn_c_last.weight.data = weight_t.clone()
- sbn_c_last.bias.data = bias_t.clone()
- inp_sbn_c_last = inp_t.clone().transpose(-1, 1).contiguous().requires_grad_()
- grad_sbn_c_last = grad_output_t.clone().transpose(-1, 1).contiguous().detach()
- out_sbn_c_last = sbn_c_last(inp_sbn_c_last)
- out_sbn_c_last.backward(grad_sbn_c_last)
- sbn_result = True
- sbn_result_c_last = True
- bn_result = True
- sbn_result = compare("comparing mean: ", mean, m, error) and sbn_result
- #sbn_result = compare("comparing variance: ", var, unb_v, error) and sbn_result
- sbn_result = compare("comparing biased variance: ", var_biased, b_v, error) and sbn_result
- out = syncbn.batchnorm_forward(inp_t, mean, inv_std, weight_t, bias_t)
- out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r
- sbn_result = compare("comparing output: ", out, out_r, error) and sbn_result
- compare("comparing bn output: ", out_bn, out_r, error)
- grad_output_t = type_tensor(grad)
- grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1))
- grad_output2_r = ref_tensor(grad)
- grad_bias_r = grad_output_r.sum(1)
- grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1)
- sum_dy_r = grad_output_r.sum(1)
- mean_dy_r = grad_output_r.mean(1)
- sum_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1)
- mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1)
- grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1)
- sum_dy, sum_dy_xmu, grad_weight, grad_bias = syncbn.reduce_bn(grad_output_t, inp_t, mean, inv_std, weight_t)
- grad_input = syncbn.batchnorm_backward(grad_output_t, inp_t, mean, inv_std, weight_t, sum_dy, sum_dy_xmu, count)
- sbn_result = compare("comparing bias grad: ", grad_bias, grad_bias_r, error) and sbn_result
- sbn_result = compare("comparing weight grad: ", grad_weight, grad_weight_r, error) and sbn_result
- sbn_result = compare("comparing sum_dy grad: ", sum_dy, sum_dy_r, error) and sbn_result
- sbn_result = compare("comparing sum_dy_xmu grad: ", sum_dy_xmu, sum_dy_xmu_r, error) and sbn_result
- sbn_result = compare("comparing input grad: ", grad_input, grad_input_r, error) and sbn_result
- compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error)
- sbn_result = compare("comparing sbn input grad: ", inp_sbn.grad, grad_input_r, error) and sbn_result
- compare("comparing bn/sbn output: ", out_bn, out_sbn, error)
- sbn_result = compare("comparing running_mean: ", bn.running_mean.data, sbn.running_mean.data, error) and sbn_result
- sbn_result = compare("comparing running_variance: ", bn.running_var.data, sbn.running_var.data, error) and sbn_result
- compare("comparing grad_input: ", inp_bn.grad, inp_sbn.grad, error)
- compare("comparing grad_bias: ", bn.bias.grad, sbn.bias.grad, error)
- compare("comparing grad_bias bn to ref: ", bn.bias.grad, grad_bias_r, error)
- sbn_result = compare("comparing grad_bias sbn to ref: ", sbn.bias.grad, grad_bias_r, error) and sbn_result
- compare("comparing grad_weight: ", bn.weight.grad, sbn.weight.grad, error)
- compare("comparing grad_weight bn to ref: ", bn.weight.grad, grad_weight_r, error)
- sbn_result = compare("comparing grad_weight sbn to ref: ", sbn.weight.grad, grad_weight_r, error) and sbn_result
- compare("comparing channel last bn/sbn output: ", out_bn, out_sbn_c_last.transpose(-1, 1).contiguous(), error)
- sbn_result_c_last = compare("comparing channel last running_mean: ", bn.running_mean.data, sbn_c_last.running_mean.data, error) and sbn_result_c_last
- sbn_result_c_last = compare("comparing channel last running_variance: ", bn.running_var.data, sbn_c_last.running_var.data, error) and sbn_result_c_last
- compare("comparing channel last grad_input: ", inp_bn.grad, inp_sbn_c_last.grad.transpose(-1, 1).contiguous(), error)
- compare("comparing channel last grad_bias: ", bn.bias.grad, sbn_c_last.bias.grad, error)
- sbn_result_c_last = compare("comparing channel last grad_bias sbn to ref: ", sbn_c_last.bias.grad, grad_bias_r, error) and sbn_result_c_last
- compare("comparing channel last grad_weight: ", bn.weight.grad, sbn_c_last.weight.grad, error)
- sbn_result_c_last = compare("comparing channel last grad_weight sbn to ref: ", sbn_c_last.weight.grad, grad_weight_r, error) and sbn_result_c_last
- if sbn_result:
- print("====SBN single gpu passed tests")
- else:
- print("*SBN single gpu failed*")
- if sbn_result_c_last:
- print("====SBN channel last single gpu passed tests")
- else:
- print("*SBN channel last single gpu failed*")
|