123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- import unittest
- import os
- import torch
- from torch.optim import Optimizer
- import apex
- from apex.multi_tensor_apply import multi_tensor_applier
- from itertools import product
- class RefLAMB(Optimizer):
- r"""Implements Lamb algorithm.
- It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
- Arguments:
- params (iterable): iterable of parameters to optimize or dicts defining
- parameter groups
- lr (float, optional): learning rate (default: 1e-3)
- betas (Tuple[float, float], optional): coefficients used for computing
- running averages of gradient and its square (default: (0.9, 0.999))
- eps (float, optional): term added to the denominator to improve
- numerical stability (default: 1e-6)
- weight_decay (float, optional): weight decay (L2 penalty) (default: 0.01)
- .. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
- https://arxiv.org/abs/1904.00962
- """
- def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01):
- if not 0.0 <= lr:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if not 0.0 <= eps:
- raise ValueError("Invalid epsilon value: {}".format(eps))
- if not 0.0 <= betas[0] < 1.0:
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
- if not 0.0 <= betas[1] < 1.0:
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
- defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
- super(RefLAMB, self).__init__(params, defaults)
- if multi_tensor_applier.available:
- import amp_C
- self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm
- # Skip buffer
- self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device)
- self.multi_tensor_lamb = amp_C.multi_tensor_lamb
- else:
- raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions')
- def step(self, closure=None):
- """Performs a single optimization step.
- Arguments:
- closure (callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- loss = None
- if closure is not None:
- loss = closure()
- # create separate grad lists for fp32, fp16, and bf16 params
- g_all_32, g_all_16, g_all_bf16 = [], [], []
- for group in self.param_groups:
- for p in group['params']:
- if p.grad is None:
- continue
- if p.dtype == torch.float32:
- g_all_32.append(p.grad.data)
- elif p.dtype == torch.float16:
- g_all_16.append(p.grad.data)
- elif p.dtype == torch.bfloat16:
- g_all_bf16.append(p.grad.data)
- else:
- raise RuntimeError('FusedLAMB only support fp16, fp32, and bf16.')
- device = self.param_groups[0]["params"][0].device
- g_norm_32, g_norm_16, g_norm_bf16 = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
- # compute grad norm for two lists
- if len(g_all_32) > 0:
- g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm,
- self._dummy_overflow_buf,
- [g_all_32], False)[0]
- if len(g_all_16) > 0:
- g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm,
- self._dummy_overflow_buf,
- [g_all_16], False)[0]
- if len(g_all_bf16) > 0:
- g_norm_bf16 = multi_tensor_applier(self.multi_tensor_l2norm,
- self._dummy_overflow_buf,
- [g_all_bf16], False)[0]
- # blend two grad norms to get global grad norm
- global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm,
- self._dummy_overflow_buf,
- [[g_norm_32, g_norm_16, g_norm_bf16]],
- False)[0]
- max_grad_norm = 1.0
- clipped_ratio = max_grad_norm / max(global_grad_norm, max_grad_norm)
- for group in self.param_groups:
- for p in group['params']:
- if p.grad is None:
- continue
- p.grad.data *= clipped_ratio
- grad = p.grad.data
- if grad.is_sparse:
- raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.')
- state = self.state[p]
- # State initialization
- if len(state) == 0:
- state['step'] = 0
- # Exponential moving average of gradient values
- state['m'] = torch.zeros_like(p.data)
- # Exponential moving average of squared gradient values
- state['v'] = torch.zeros_like(p.data)
- m_t, v_t = state['m'], state['v']
- beta1, beta2 = group['betas']
- state['step'] += 1
- # m_t = beta1 * m + (1 - beta1) * g_t
- m_t.mul_(beta1).add_(grad, alpha=1-beta1)
- # v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
- if len(g_all_16) > 0:
- v_t.mul_(beta2)
- v_t = v_t.to(torch.float32)
- grad32 = grad.to(torch.float32)
- v_t.addcmul_(grad32, grad32, value=1-beta2)
- else:
- v_t.mul_(beta2).addcmul_(grad, grad, value=1-beta2)
- # Debiasing
- m_t_hat = m_t / (1.0 - beta1 ** state['step'])
- v_t_hat = v_t / (1.0 - beta2 ** state['step'])
- update = m_t_hat / v_t_hat.sqrt().add(group['eps'])
- if group['weight_decay'] != 0:
- update.add_(p.data, alpha=group['weight_decay'])
- trust_ratio = 1.0
- w_norm = p.data.to(torch.float32).pow(2).sum().sqrt()
- g_norm = update.pow(2).sum().sqrt()
- if w_norm > 0 and g_norm > 0:
- trust_ratio = w_norm / g_norm
- state['w_norm'] = w_norm
- state['g_norm'] = g_norm
- state['trust_ratio'] = trust_ratio
- step_size = group['lr']
- p.data.add_(update, alpha=-step_size*trust_ratio)
- return loss
- class TestLamb(unittest.TestCase):
- def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7):
- self.max_abs_diff = max_abs_diff
- self.max_rel_diff = max_rel_diff
- self.iters = iters
- torch.cuda.manual_seed(9876)
- def tearDown(self):
- pass
- def gen_param_optim(self, tensors, lamb_option):
- ref_param = []
- tst_param = []
- for tensor in tensors:
- ref_param.append(torch.nn.Parameter(tensor.clone()))
- tst_param.append(torch.nn.Parameter(tensor.clone()))
- ref_optim = self.ref_optim(ref_param, **lamb_option)
- tst_optim = self.tst_optim(tst_param, use_nvlamb=True, **lamb_option)
- return (ref_param, tst_param, ref_optim, tst_optim)
- def gen_grad(self, ref_param, tst_param):
- for p_ref, p_tst in zip(ref_param, tst_param):
- p_ref.grad = torch.rand_like(p_ref)
- p_tst.grad = p_ref.grad
- def gen_mixed_grad(self, ref_param, tst_param, scale=1.0):
- half_grads = []
- for p_ref, _ in zip(ref_param, tst_param):
- half_grads.append(torch.rand_like(p_ref).half())
- p_ref.grad = half_grads[-1].float() / scale
- return half_grads
- def get_max_diff(self, ref_param, tst_param):
- max_abs_diff = max_rel_diff = 0
- for p_ref, p_tst in zip(ref_param, tst_param):
- max_abs_diff_p = (p_ref - p_tst).abs().max().item()
- max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item()
- if max_abs_diff_p > max_abs_diff: max_abs_diff = max_abs_diff_p
- if max_rel_diff_p > max_rel_diff: max_rel_diff = max_rel_diff_p
- return max_abs_diff, max_rel_diff
- def gen_single_type_test(self, param_type=torch.float, device="cuda"):
- nelem = 18011
- tensor = torch.rand(nelem, dtype=param_type, device=device)
- weight_decay = [0, 0.01]
- for wd in weight_decay:
- lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd}
- ref_param, tst_param, ref_optim, tst_optim = \
- self.gen_param_optim([tensor], lamb_option)
- if isinstance(tst_optim, apex.optimizers.FusedMixedPrecisionLamb):
- if param_type != torch.float:
- # joseli: This parameter is usually passed into the constructor,
- # but I do not want to change the testing interface.
- # As long as this parameter is set before the first call to step(),
- # then it should act normally.
- tst_optim.reduced_precision_dtype = param_type
- for i in range(self.iters):
- self.gen_grad(ref_param, tst_param)
- ref_optim.step()
- torch.cuda.synchronize()
- tst_optim.step()
- torch.cuda.synchronize()
- torch.testing.assert_close(tst_param, ref_param)
- class TestFusedLAMB(TestLamb):
- def __init__(self, *args, **kwargs):
- super(TestLamb, self).__init__(*args, **kwargs)
- self.ref_optim = RefLAMB
- self.tst_optim = apex.optimizers.FusedLAMB
- def test_float(self):
- self.gen_single_type_test(param_type=torch.float)
- @unittest.skip("PyTorch optimizer is not numerically correct for fp16")
- def test_half(self):
- self.gen_single_type_test(param_type=torch.float16)
- @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
- def test_multi_device(self):
- devices = ("cuda:0", "cuda:1")
- for current_dev, tensor_dev in product(devices, devices):
- with torch.cuda.device(current_dev):
- self.gen_single_type_test(param_type=torch.float, device=tensor_dev)
- def test_multi_params(self):
- sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
- weight_decay = [0, 0.01]
- for wd in weight_decay:
- lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd}
- tensors = []
- for size in sizes:
- tensors.append(torch.rand(size, dtype=torch.float, device='cuda'))
- ref_param, tst_param, ref_optim, tst_optim = \
- self.gen_param_optim(tensors, lamb_option)
- for i in range(self.iters):
- self.gen_grad(ref_param, tst_param)
- ref_optim.step()
- tst_optim.step()
- max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
- self.assertLessEqual(max_abs_diff, self.max_abs_diff)
- self.assertLessEqual(max_rel_diff, self.max_rel_diff)
- def test_lamb_option(self):
- nelem = 1
- tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
- weight_decay = [0, 0.01]
- for wd in weight_decay:
- lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd}
- ref_param, tst_param, ref_optim, tst_optim = \
- self.gen_param_optim([tensor], lamb_option)
- for i in range(self.iters):
- self.gen_grad(ref_param, tst_param)
- ref_optim.step()
- tst_optim.step()
- max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
- self.assertLessEqual(max_abs_diff, self.max_abs_diff)
- self.assertLessEqual(max_rel_diff, self.max_rel_diff)
- class TestFusedMixedPrecisionLamb(TestLamb):
- def __init__(self, *args, **kwargs):
- super(TestLamb, self).__init__(*args, **kwargs)
- self.ref_optim = RefLAMB
- self.tst_optim = apex.optimizers.FusedMixedPrecisionLamb
- def test_float(self):
- self.gen_single_type_test(param_type=torch.float)
- def test_bfloat16(self):
- self.iters = 4
- self.gen_single_type_test(param_type=torch.bfloat16)
- def test_half(self):
- self.iters = 1
- self.gen_single_type_test(param_type=torch.float16)
- @unittest.skipIf(torch.cuda.device_count()<2, "more than 1 GPU required")
- def test_multi_device(self):
- devices = ("cuda:0", "cuda:1")
- for current_dev, tensor_dev in product(devices, devices):
- with torch.cuda.device(current_dev):
- self.gen_single_type_test(param_type=torch.float, device=tensor_dev)
- def test_multi_params(self):
- sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]]
- weight_decay = [0, 0.01]
- for wd in weight_decay:
- lamb_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, 'weight_decay':wd}
- tensors = []
- for size in sizes:
- tensors.append(torch.rand(size, dtype=torch.float, device='cuda'))
- ref_param, tst_param, ref_optim, tst_optim = \
- self.gen_param_optim(tensors, lamb_option)
- for i in range(self.iters):
- self.gen_grad(ref_param, tst_param)
- ref_optim.step()
- tst_optim.step()
- max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
- self.assertLessEqual(max_abs_diff, self.max_abs_diff)
- self.assertLessEqual(max_rel_diff, self.max_rel_diff)
- def test_lamb_option(self):
- nelem = 1
- tensor = torch.rand(nelem, dtype=torch.float, device='cuda')
- weight_decay = [0, 0.01]
- for wd in weight_decay:
- lamb_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, 'weight_decay':wd}
- ref_param, tst_param, ref_optim, tst_optim = \
- self.gen_param_optim([tensor], lamb_option)
- for i in range(self.iters):
- self.gen_grad(ref_param, tst_param)
- ref_optim.step()
- tst_optim.step()
- max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param)
- self.assertLessEqual(max_abs_diff, self.max_abs_diff)
- self.assertLessEqual(max_rel_diff, self.max_rel_diff)
- if __name__ == '__main__':
- script_path = os.path.dirname(os.path.realpath(__file__))
- unittest.main()
|