123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import unittest
- import torch
- import torch.nn as nn
- from apex.fp16_utils import FP16Model
- class DummyBlock(nn.Module):
- def __init__(self):
- super(DummyBlock, self).__init__()
- self.conv = nn.Conv2d(10, 10, 2)
- self.bn = nn.BatchNorm2d(10, affine=True)
- def forward(self, x):
- return self.conv(self.bn(x))
- class DummyNet(nn.Module):
- def __init__(self):
- super(DummyNet, self).__init__()
- self.conv1 = nn.Conv2d(3, 10, 2)
- self.bn1 = nn.BatchNorm2d(10, affine=False)
- self.db1 = DummyBlock()
- self.db2 = DummyBlock()
- def forward(self, x):
- out = x
- out = self.conv1(out)
- out = self.bn1(out)
- out = self.db1(out)
- out = self.db2(out)
- return out
- class DummyNetWrapper(nn.Module):
- def __init__(self):
- super(DummyNetWrapper, self).__init__()
- self.bn = nn.BatchNorm2d(3, affine=True)
- self.dn = DummyNet()
- def forward(self, x):
- return self.dn(self.bn(x))
- class TestFP16Model(unittest.TestCase):
- def setUp(self):
- self.N = 64
- self.C_in = 3
- self.H_in = 16
- self.W_in = 32
- self.in_tensor = torch.randn((self.N, self.C_in, self.H_in, self.W_in)).cuda()
- self.orig_model = DummyNetWrapper().cuda()
- self.fp16_model = FP16Model(self.orig_model)
- def test_params_and_buffers(self):
- exempted_modules = [
- self.fp16_model.network.bn,
- self.fp16_model.network.dn.db1.bn,
- self.fp16_model.network.dn.db2.bn,
- ]
- for m in self.fp16_model.modules():
- expected_dtype = torch.float if (m in exempted_modules) else torch.half
- for p in m.parameters(recurse=False):
- assert p.dtype == expected_dtype
- for b in m.buffers(recurse=False):
- assert b.dtype in (expected_dtype, torch.int64)
- def test_output_is_half(self):
- out_tensor = self.fp16_model(self.in_tensor)
- assert out_tensor.dtype == torch.half
|