123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 |
- #include <ATen/ATen.h>
- #include <ATen/AccumulateType.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <ATen/cuda/Exceptions.h>
- // Another possibility:
- // #include <torch/all.h>
- #include <assert.h>
- #include "type_shim.h"
- #include "multi_tensor_apply.cuh"
- #define BLOCK_SIZE 512
- #define ILP 4
- typedef enum{
- MOMENT_MODE_0 =0, // Novograd paper mode, momentum caculation with denom then decay inside
- MOMENT_MODE_1 =1 // Decoupled weight decay mode
- } momentMode_t;
- void multi_tensor_norm_out_cuda(
- int chunk_size,
- at::Tensor noop_flag,
- std::vector<std::vector<at::Tensor>> tensor_lists,
- at::Tensor out,
- const float alpha,
- const float beta,
- const int norm_type);
- using MATH_T = float;
- template<typename T>
- struct NovoGradFunctor
- {
- __device__ __forceinline__ void operator()(
- int chunk_size,
- volatile int* noop_gmem,
- TensorListMetadata<3>& tl,
- const float beta1,
- const float beta2,
- const float beta3,
- const float beta1_correction,
- const float beta2_correction,
- const float epsilon,
- const float lr,
- momentMode_t m_mode,
- const float decay,
- const float* per_tensor_grad_norm)
- {
- // I'd like this kernel to propagate infs/nans.
- // if(*noop_gmem == 1)
- // return;
- int tensor_loc = tl.block_to_tensor[blockIdx.x];
- int tensor_num = tl.start_tensor_this_launch + tensor_loc;
- int chunk_idx = tl.block_to_chunk[blockIdx.x];
- int n = tl.sizes[tensor_loc];
- float grad_norm = per_tensor_grad_norm[tensor_num];
- T* g = (T*)tl.addresses[0][tensor_loc];
- g += chunk_idx*chunk_size;
- T* p = (T*)tl.addresses[1][tensor_loc];
- p += chunk_idx*chunk_size;
- T* m = (T*)tl.addresses[2][tensor_loc];
- m += chunk_idx*chunk_size;
- n -= chunk_idx*chunk_size;
- // see note in multi_tensor_scale_kernel.cu
- for(int i_start = 0;
- i_start < n && i_start < chunk_size;
- i_start += blockDim.x*ILP)
- {
- MATH_T r_g[ILP];
- MATH_T r_p[ILP];
- MATH_T r_m[ILP];
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- int i = i_start + threadIdx.x + ii*blockDim.x;
- if(i < n && i < chunk_size)
- {
- r_g[ii] = g[i];
- r_p[ii] = p[i];
- r_m[ii] = m[i];
- } else {
- r_g[ii] = MATH_T(0);
- r_p[ii] = MATH_T(0);
- r_m[ii] = MATH_T(0);
- }
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- if (m_mode == MOMENT_MODE_0) {
- MATH_T next_v_unbiased = grad_norm / beta2_correction;
- MATH_T denom = next_v_unbiased + epsilon;
- r_g[ii] = (r_g[ii] / denom) + (decay * r_p[ii]);
- r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii];
- MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
- r_p[ii] = r_p[ii] - (lr * next_m_unbiased);
- }
- else {
- r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii];
- MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
- MATH_T next_v_unbiased = grad_norm / beta2_correction;
- MATH_T denom = next_v_unbiased + epsilon;
- MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]);
- r_p[ii] = r_p[ii] - (lr * update);
- }
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- int i = i_start + threadIdx.x + ii*blockDim.x;
- if(i < n && i < chunk_size)
- {
- p[i] = r_p[ii];
- m[i] = r_m[ii];
- }
- }
- }
- }
- };
- void multi_tensor_novograd_cuda(
- int chunk_size,
- at::Tensor noop_flag,
- std::vector<std::vector<at::Tensor>> tensor_lists,
- at::Tensor grad_norms,
- const float lr,
- const float beta1,
- const float beta2,
- const float epsilon,
- const int step,
- const int bias_correction,
- const float weight_decay,
- const int grad_averaging,
- const int moment_mode,
- const int norm_type)
- {
- using namespace at;
- // Handle bias correction mode
- float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
- if (bias_correction == 1) {
- bias_correction1 = 1 - std::pow(beta1, step);
- bias_correction2 = std::sqrt(1 - std::pow(beta2, step));
- }
- // Handle grad averaging mode
- float beta3 = 1;
- if (grad_averaging == 1) beta3 = 1 - beta1;
- std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1);
- // Compute and update grad norm
- // Here use a per tensor norm, and blend new norm(n) and old norm(gn) by
- // L-2: gn = sqrt(a * gn^2 + b * n^2)
- // L-inf: gn = a * gn + b * n
- multi_tensor_norm_out_cuda(chunk_size, noop_flag, grad_list, grad_norms, beta2, (1.0f - beta2), norm_type);
- // Assume single type across p,g,m1,m2 now
- DISPATCH_DOUBLE_FLOAT_AND_HALF(
- tensor_lists[0][0].scalar_type(), 0, "novograd",
- multi_tensor_apply<3>(
- BLOCK_SIZE,
- chunk_size,
- noop_flag,
- tensor_lists,
- NovoGradFunctor<scalar_t_0>(),
- beta1,
- beta2,
- beta3, // 1-beta1 or 1 depends on averaging mode
- bias_correction1,
- bias_correction2,
- epsilon,
- lr,
- (momentMode_t) moment_mode,
- weight_decay,
- grad_norms.DATA_PTR<float>()); )
- AT_CUDA_CHECK(cudaGetLastError());
- }
|