123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 |
- #include <ATen/ATen.h>
- #include <ATen/AccumulateType.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <ATen/cuda/Exceptions.h>
- // Another possibility:
- // #include <torch/all.h>
- #include <assert.h>
- #include "type_shim.h"
- #include "multi_tensor_apply.cuh"
- #define BLOCK_SIZE 512
- #define ILP 4
- template<typename T>
- __device__ __forceinline__ bool is_aligned(T* p){
- return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
- }
- template<typename T>
- __device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
- typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
- ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
- }
- typedef enum{
- MOMENT_MODE_0 =0, // L2 regularization mode
- MOMENT_MODE_1 =1 // Decoupled weight decay mode
- } adamMode_t;
- std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
- int chunk_size,
- at::Tensor noop_flag,
- std::vector<std::vector<at::Tensor>> tensor_lists,
- at::optional<bool> per_tensor_python);
- using MATH_T = float;
- template<typename T>
- struct LAMBStage1Functor
- {
- __device__ __forceinline__ void operator()(
- int chunk_size,
- volatile int* noop_gmem,
- TensorListMetadata<4>& tl,
- const float beta1,
- const float beta2,
- const float beta3,
- const float beta1_correction,
- const float beta2_correction,
- const float epsilon,
- adamMode_t mode,
- const float decay,
- const float* global_grad_norm,
- const float max_global_grad_norm)
- {
- // I'd like this kernel to propagate infs/nans.
- // if(*noop_gmem == 1)
- // return;
- int tensor_loc = tl.block_to_tensor[blockIdx.x];
- int chunk_idx = tl.block_to_chunk[blockIdx.x];
- int n = tl.sizes[tensor_loc];
- float clipped_global_grad_norm = (*global_grad_norm) > max_global_grad_norm ? (*global_grad_norm) / max_global_grad_norm : 1.0f;
- T* g = (T*)tl.addresses[0][tensor_loc];
- g += chunk_idx*chunk_size;
- T* p = (T*)tl.addresses[1][tensor_loc];
- p += chunk_idx*chunk_size;
- T* m = (T*)tl.addresses[2][tensor_loc];
- m += chunk_idx*chunk_size;
- T* v = (T*)tl.addresses[3][tensor_loc];
- v += chunk_idx*chunk_size;
- n -= chunk_idx*chunk_size;
- MATH_T r_g[ILP];
- MATH_T r_p[ILP];
- MATH_T r_m[ILP];
- MATH_T r_v[ILP];
- // to make things simple, we put aligned case in a different code path
- if(n % ILP == 0 &&
- chunk_size % ILP == 0 &&
- is_aligned(g) &&
- is_aligned(p) &&
- is_aligned(m) &&
- is_aligned(v))
- {
- T l_g[ILP];
- T l_p[ILP];
- T l_m[ILP];
- T l_v[ILP];
- for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
- {
- // load
- load_store(l_g, g, 0, i_start);
- if (decay != 0)
- load_store(l_p, p, 0, i_start);
- load_store(l_m, m, 0, i_start);
- load_store(l_v, v, 0, i_start);
- // unpack
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- r_g[ii] = l_g[ii];
- if (decay == 0) {
- r_p[ii] = MATH_T(0);
- }
- else {
- r_p[ii] = l_p[ii];
- }
- r_m[ii] = l_m[ii];
- r_v[ii] = l_v[ii];
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- if (mode == MOMENT_MODE_0) {
- MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
- // L2 on scaled grad
- scaled_grad = scaled_grad + decay*r_p[ii];
- r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
- r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
- MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
- MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
- MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
- r_p[ii] = next_m_unbiased / denom;
- }
- else {
- MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
- r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
- r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
- MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
- MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
- MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
- r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]);
- }
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- l_p[ii] = r_p[ii];
- l_m[ii] = r_m[ii];
- l_v[ii] = r_v[ii];
- }
- // store
- load_store(g, l_p, i_start, 0);
- load_store(m, l_m, i_start, 0);
- load_store(v, l_v, i_start, 0);
- }
- }
- else
- {
- // see note in multi_tensor_scale_kernel.cu
- for(int i_start = 0;
- i_start < n && i_start < chunk_size;
- i_start += blockDim.x*ILP)
- {
- MATH_T r_g[ILP];
- MATH_T r_p[ILP];
- MATH_T r_m[ILP];
- MATH_T r_v[ILP];
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- int i = i_start + threadIdx.x + ii*blockDim.x;
- if(i < n && i < chunk_size)
- {
- r_g[ii] = g[i];
- // special ?optimization? for lamb stage 1
- if (decay == 0) {
- r_p[ii] = MATH_T(0);
- }
- else {
- r_p[ii] = p[i];
- }
- r_m[ii] = m[i];
- r_v[ii] = v[i];
- } else {
- r_g[ii] = MATH_T(0);
- r_p[ii] = MATH_T(0);
- r_m[ii] = MATH_T(0);
- r_v[ii] = MATH_T(0);
- }
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- if (mode == MOMENT_MODE_0) {
- MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
- // L2 on scaled grad
- scaled_grad = scaled_grad + decay*r_p[ii];
- r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
- r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
- MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
- MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
- MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
- r_p[ii] = next_m_unbiased / denom;
- }
- else {
- MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
- r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
- r_v[ii] = r_v[ii] * beta2 + (1-beta2) * scaled_grad * scaled_grad;
- MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
- MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
- MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
- r_p[ii] = (next_m_unbiased/denom) + (decay*r_p[ii]);
- }
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- int i = i_start + threadIdx.x + ii*blockDim.x;
- if(i < n && i < chunk_size)
- {
- g[i] = r_p[ii];
- m[i] = r_m[ii];
- v[i] = r_v[ii];
- }
- }
- }
- }
- }
- };
- // Step 2 reads in 'update' value and per-tensor param_norm and update_norm.
- // It computes new parameter value.
- template<typename T>
- struct LAMBStage2Functor
- {
- __device__ __forceinline__ void operator()(
- int chunk_size,
- volatile int* noop_gmem,
- TensorListMetadata<2>& tl,
- const float* per_tensor_param_norm,
- const float* per_tensor_update_norm,
- const float learning_rate,
- const float decay,
- bool use_nvlamb)
- {
- // I'd like this kernel to propagate infs/nans.
- // if(*noop_gmem == 1)
- // return;
- int tensor_loc = tl.block_to_tensor[blockIdx.x];
- int tensor_num = tl.start_tensor_this_launch + tensor_loc;
- int chunk_idx = tl.block_to_chunk[blockIdx.x];
- int n = tl.sizes[tensor_loc];
- MATH_T ratio = learning_rate;
- // nvlamb: apply adaptive learning rate to all parameters
- // otherwise, only apply to those with non-zero weight decay
- if (use_nvlamb || (decay != 0.0))
- {
- float param_norm = per_tensor_param_norm[tensor_num];
- float update_norm = per_tensor_update_norm[tensor_num];
- ratio = (update_norm != 0.0f && param_norm != 0.0f) ? learning_rate * (param_norm / update_norm) : learning_rate;
- }
- T* update = (T*)tl.addresses[0][tensor_loc];
- update += chunk_idx*chunk_size;
- T* p = (T*)tl.addresses[1][tensor_loc];
- p += chunk_idx*chunk_size;
- n -= chunk_idx*chunk_size;
- // to make things simple, we put aligned case in a different code path
- if(n % ILP == 0 &&
- chunk_size % ILP == 0 &&
- is_aligned(p) &&
- is_aligned(update))
- {
- T r_p[ILP];
- T r_update[ILP];
- for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
- {
- // load
- load_store(r_p, p, 0, i_start);
- load_store(r_update, update, 0, i_start);
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- r_p[ii] = static_cast<MATH_T>(r_p[ii]) - (ratio * static_cast<MATH_T>(r_update[ii]));
- }
- load_store(p, r_p, i_start, 0);
- }
- }
- else
- {
- for(int i_start = 0;
- i_start < n && i_start < chunk_size;
- i_start += blockDim.x*ILP)
- {
- MATH_T r_p[ILP];
- MATH_T r_update[ILP];
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- int i = i_start + threadIdx.x + ii*blockDim.x;
- if(i < n && i < chunk_size)
- {
- r_p[ii] = p[i];
- r_update[ii] = update[i];
- }
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- r_p[ii] = r_p[ii] - (ratio * r_update[ii]);
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- int i = i_start + threadIdx.x + ii*blockDim.x;
- if(i < n && i < chunk_size)
- {
- p[i] = r_p[ii];
- }
- }
- }
- }
- }
- };
- void multi_tensor_lamb_cuda(
- int chunk_size,
- at::Tensor noop_flag,
- std::vector<std::vector<at::Tensor>> tensor_lists,
- const float lr,
- const float beta1,
- const float beta2,
- const float epsilon,
- const int step,
- const int bias_correction,
- const float weight_decay,
- const int grad_averaging,
- const int mode,
- at::Tensor global_grad_norm,
- const float max_grad_norm,
- at::optional<bool> use_nvlamb_python)
- {
- using namespace at;
- // Master weight and 32bit momentum(potentially changing) is not handled by this
- // So we assume every tensor are all in the same type
- bool use_nvlamb = use_nvlamb_python.has_value() ? use_nvlamb_python.value() : false;
- // Handle bias correction mode
- float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
- if (bias_correction == 1) {
- bias_correction1 = 1 - std::pow(beta1, step);
- bias_correction2 = 1 - std::pow(beta2, step);
- }
- // Handle grad averaging mode
- float beta3 = 1.0f;
- if (grad_averaging == 1) beta3 = 1 - beta1;
- std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(), tensor_lists.begin()+1);
- std::vector<std::vector<at::Tensor>> param_list(tensor_lists.begin()+1, tensor_lists.begin()+2);
- // Compute per tensor param norm
- auto param_norm_tuple = multi_tensor_l2norm_cuda(chunk_size, noop_flag, param_list, true);
- // We now in-place modify grad to store update before compute its norm
- // Generally this is not a issue since people modify grad in step() method all the time
- // We can also grab list of empty tensor to avoid this, but I'd like to save space/cpu code
- DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_1",
- multi_tensor_apply<4>(
- BLOCK_SIZE,
- chunk_size,
- noop_flag,
- tensor_lists,
- LAMBStage1Functor<scalar_t_0>(),
- beta1,
- beta2,
- beta3, // 1-beta1 or 1 depends on averaging mode
- bias_correction1,
- bias_correction2,
- epsilon,
- (adamMode_t) mode,
- weight_decay,
- global_grad_norm.DATA_PTR<float>(),
- max_grad_norm); )
- // Compute update norms
- auto update_norm_tuple = multi_tensor_l2norm_cuda(chunk_size, noop_flag, grad_list, true);
- std::vector<std::vector<at::Tensor>> grad_param_list(tensor_lists.begin(), tensor_lists.begin()+2);
- DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "lamb_stage_2",
- multi_tensor_apply<2>(
- BLOCK_SIZE,
- chunk_size,
- noop_flag,
- grad_param_list,
- LAMBStage2Functor<scalar_t_0>(),
- std::get<1>(param_norm_tuple).DATA_PTR<float>(),
- std::get<1>(update_norm_tuple).DATA_PTR<float>(),
- lr,
- weight_decay,
- use_nvlamb); )
- AT_CUDA_CHECK(cudaGetLastError());
- }
|