123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 |
- #include <ATen/ATen.h>
- #include <ATen/AccumulateType.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <ATen/cuda/Exceptions.h>
- #include <c10/cuda/CUDAGuard.h>
- // Another possibility:
- // #include <torch/all.h>
- #include <assert.h>
- #include "type_shim.h"
- #include "multi_tensor_apply.cuh"
- #define BLOCK_SIZE 512
- #define ILP 4
- template<typename T>
- __device__ __forceinline__ bool is_aligned(T* p){
- return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
- }
- template<typename T>
- __device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
- typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
- ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
- }
- template<typename in_t, typename out_t>
- struct L2NormScaleFunctor
- {
- __device__ __forceinline__ void operator()(
- int chunk_size,
- volatile int* noop_gmem,
- TensorListMetadata<2>& tl,
- float* output,
- float* output_per_tensor,
- float scale,
- bool per_tensor,
- int max_chunks_per_tensor)
- {
- // I'd like this kernel to propagate infs/nans.
- // if(*noop_gmem == 1)
- // return;
- int tensor_loc = tl.block_to_tensor[blockIdx.x];
- int chunk_idx = tl.block_to_chunk[blockIdx.x];
- int n = tl.sizes[tensor_loc];
- in_t* in = (in_t*)tl.addresses[0][tensor_loc];
- in += chunk_idx*chunk_size;
- out_t* out = (out_t*)tl.addresses[1][tensor_loc];
- out += chunk_idx*chunk_size;
- n -= chunk_idx*chunk_size;
- __shared__ float s_vals[512];
- float vals[ILP]; // = {0}; // this probably works too but I want to be sure...
- in_t r_in[ILP];
- for(int i = 0; i < ILP; i++)
- {
- vals[i] = 0.f;
- r_in[i] = 0;
- }
- //bool finite = true;
- out_t r_out[ILP];
- // to make things simple, we put aligned case in a different code path
- if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(in) && is_aligned(out))
- {
- for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
- {
- // load
- load_store(r_in, in, 0 , i_start);
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- float next = static_cast<float>(r_in[ii]);
- r_out[ii] = next*scale;
- vals[ii] += next*next;
- //finite = finite && isfinite(r_in[ii]);
- }
- load_store(out, r_out, i_start, 0);
- }
- }
- else
- {
- for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
- {
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- r_in[ii] = 0;
- int i = i_start + threadIdx.x + ii*blockDim.x;
- if(i < n && i < chunk_size)
- {
- r_in[ii] = in[i];
- float next = static_cast<float>(in[i]);
- vals[ii] += next*next;
- }
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- r_out[ii] = static_cast<float>(r_in[ii]) * scale;
- // finite = finite && isfinite(r_in[ii]);
- }
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- int i = i_start + threadIdx.x + ii*blockDim.x;
- if(i < n && i < chunk_size)
- out[i] = r_out[ii];
- }
- }
- }
- float val = 0.f;
- for(int i = 0; i < ILP; i++)
- val += vals[i];
- float final = reduce_block_into_lanes(s_vals, val);
- if(threadIdx.x == 0)
- {
- if(!isfinite(final))
- *noop_gmem = 1; // Blindly fire off a write. These will race but that's ok.
- output[blockIdx.x] += final;
- if(per_tensor)
- output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final;
- }
- }
- };
- // Probably better to template, but since we are not likely to support other norm
- template<typename x_t>
- struct MaxNormFunctor
- {
- __device__ __forceinline__ void operator()(
- int chunk_size,
- volatile int* noop_gmem,
- TensorListMetadata<1>& tl,
- float* output,
- float* output_per_tensor,
- bool per_tensor,
- int max_chunks_per_tensor)
- {
- // I'd like this kernel to propagate infs/nans.
- // if(*noop_gmem == 1)
- // return;
- int tensor_loc = tl.block_to_tensor[blockIdx.x];
- int chunk_idx = tl.block_to_chunk[blockIdx.x];
- int n = tl.sizes[tensor_loc];
- x_t* x = (x_t*)tl.addresses[0][tensor_loc];
- x += chunk_idx*chunk_size;
- n -= chunk_idx*chunk_size;
- __shared__ float s_vals[512];
- float vals[ILP]; // = {0}; // this probably works too but I want to be sure...
- x_t r_x[ILP];
- for(int i = 0; i < ILP; i++)
- {
- vals[i] = 0.f;
- r_x[i] = 0;
- }
- // to make things simple, we put aligned case in a different code path
- if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x))
- {
- for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
- {
- // load
- load_store(r_x, x, 0 , i_start);
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- float next = static_cast<float>(r_x[ii]);
- vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next));
- }
- }
- }
- else
- {
- for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
- {
- #pragma unroll
- for(int ii = 0; ii < ILP; ii++)
- {
- int i = i_start + threadIdx.x + ii*blockDim.x;
- if(i < n && i < chunk_size)
- {
- float next = static_cast<float>(x[i]);
- vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next));
- }
- }
- }
- }
- float val = 0.f;
- for(int i = 0; i < ILP; i++)
- val = fmaxf(fabsf(val), fabsf(vals[i]));
- float final = reduce_block_into_lanes_max_op(s_vals, val);
- if(threadIdx.x == 0)
- {
- if(!isfinite(final))
- *noop_gmem = 1; // Blindly fire off a write. These will race but that's ok.
- output[blockIdx.x] = fmaxf(fabsf(output[blockIdx.x]), fabsf(final));
- if(per_tensor)
- output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final;
- }
- }
- };
- __global__ void cleanup_v3(
- float* output,
- float* output_per_tensor,
- float* ret,
- float* ret_per_tensor,
- bool per_tensor,
- int max_chunks_per_tensor)
- {
- __shared__ float vals[512];
- if(blockIdx.x == 0)
- {
- float val = 0;
- if(threadIdx.x < 320)
- val = output[threadIdx.x];
- float final = reduce_block_into_lanes(vals, val);
- if(threadIdx.x == 0)
- *ret = sqrt(final);
- }
- if(per_tensor)
- {
- float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor;
- float val = 0;
- for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x)
- val += output_this_tensor[i];
- float final = reduce_block_into_lanes(vals, val);
- if(threadIdx.x == 0)
- ret_per_tensor[blockIdx.x] = sqrt(final);
- }
- }
- std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_scale_cuda(
- int chunk_size,
- at::Tensor noop_flag,
- std::vector<std::vector<at::Tensor>> tensor_lists,
- float scale,
- at::optional<bool> per_tensor_python)
- {
- bool per_tensor = per_tensor_python.has_value() ? per_tensor_python.value() : false;
- auto float_options = tensor_lists[0][0].options().dtype(at::kFloat);
- auto output = at::zeros({320}, float_options);
- at::Tensor output_per_tensor;
- at::Tensor ret_per_tensor;
- int ntensors = tensor_lists[0].size();
- int max_chunks_per_tensor = -1;
- if(per_tensor)
- {
- for(int t = 0; t < ntensors; t++)
- {
- int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size;
- if(max_chunks_this_tensor > max_chunks_per_tensor)
- max_chunks_per_tensor = max_chunks_this_tensor;
- }
- output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options);
- ret_per_tensor = at::empty({ntensors}, float_options);
- }
- else
- {
- ret_per_tensor = at::empty({0}, float_options);
- }
- DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_scale_cuda",
- DISPATCH_FLOAT_AND_HALF(tensor_lists[1][0].scalar_type(), 1, "multi_tensor_l2norm_scale_cuda",
- multi_tensor_apply<2>(
- BLOCK_SIZE,
- chunk_size,
- noop_flag,
- tensor_lists,
- L2NormScaleFunctor<scalar_t_0, scalar_t_1>(),
- output.DATA_PTR<float>(),
- per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr,
- scale,
- per_tensor,
- max_chunks_per_tensor);))
- AT_CUDA_CHECK(cudaGetLastError());
- // AT_CUDA_CHECK(cudaDeviceSynchronize());
- // This involves one more small kernel launches, but will be negligible end to end.
- // I could get rid of these by hacking the functor + multi tensor harness with persistence
- // logic, but keeping it simple for now
- auto ret = at::empty({1}, output.options());
- const at::cuda::OptionalCUDAGuard device_guard(device_of(output));
- auto stream = at::cuda::getCurrentCUDAStream();
- cleanup_v3<<<per_tensor ? ntensors : 1, 512, 0, stream>>>(
- output.DATA_PTR<float>(),
- per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr,
- ret.DATA_PTR<float>(),
- per_tensor ? ret_per_tensor.DATA_PTR<float>() : nullptr,
- per_tensor,
- max_chunks_per_tensor);
- return std::tuple<at::Tensor, at::Tensor>(ret, ret_per_tensor);
- }
|