1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930 |
- #include <ATen/ATen.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <assert.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <torch/torch.h>
- /* Includes, cuda */
- #include <cublas_v2.h>
- #include <cuda_runtime.h>
- #if defined(CUBLAS_VERSION) && CUBLAS_VERSION >= 11000
- // includes cublaslt
- #include <cublasLt.h>
- #endif
- // FP64 Wrapper around cublas GEMMEx
- cublasStatus_t gemm_bias(
- cublasHandle_t handle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float* alpha,
- double* A,
- int lda,
- double* B,
- int ldb,
- const float* beta,
- double* C,
- int ldc) {
- return cublasGemmEx(
- handle,
- transa,
- transb,
- m,
- n,
- k,
- alpha,
- A,
- CUDA_R_64F,
- lda,
- B,
- CUDA_R_64F,
- ldb,
- beta,
- C,
- CUDA_R_64F,
- ldc,
- CUDA_R_64F,
- CUBLAS_GEMM_DEFAULT);
- }
- // FP32 Wrapper around cublas GEMMEx
- cublasStatus_t gemm_bias(
- cublasHandle_t handle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float* alpha,
- float* A,
- int lda,
- float* B,
- int ldb,
- const float* beta,
- float* C,
- int ldc) {
- return cublasGemmEx(
- handle,
- transa,
- transb,
- m,
- n,
- k,
- alpha,
- A,
- CUDA_R_32F,
- lda,
- B,
- CUDA_R_32F,
- ldb,
- beta,
- C,
- CUDA_R_32F,
- ldc,
- CUDA_R_32F,
- CUBLAS_GEMM_DEFAULT);
- }
- // FP16 Tensor core wrapper around cublas GEMMEx
- cublasStatus_t gemm_bias(
- cublasHandle_t handle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float* alpha,
- at::Half* A,
- int lda,
- at::Half* B,
- int ldb,
- const float* beta,
- at::Half* C,
- int ldc) {
- return cublasGemmEx(
- handle,
- transa,
- transb,
- m,
- n,
- k,
- alpha,
- A,
- CUDA_R_16F,
- lda,
- B,
- CUDA_R_16F,
- ldb,
- beta,
- C,
- CUDA_R_16F,
- ldc,
- CUDA_R_32F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP);
- }
- // BF16 Tensor core wrapper around cublas GEMMEx
- cublasStatus_t gemm_bias(
- cublasHandle_t handle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float* alpha,
- at::BFloat16* A,
- int lda,
- at::BFloat16* B,
- int ldb,
- const float* beta,
- at::BFloat16* C,
- int ldc) {
- return cublasGemmEx(
- handle,
- transa,
- transb,
- m,
- n,
- k,
- alpha,
- A,
- CUDA_R_16BF,
- lda,
- B,
- CUDA_R_16BF,
- ldb,
- beta,
- C,
- CUDA_R_16BF,
- ldc,
- CUDA_R_32F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP);
- }
- #if defined(CUBLAS_VERSION) && CUBLAS_VERSION >= 11600
- int gemm_bias_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- at::Half* A,
- int lda,
- at::Half* B,
- int ldb,
- const float *beta, /* host pointer */
- at::Half* C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* bias) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DEFAULT;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (use_bias) {
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- epilogue = CUBLASLT_EPILOGUE_BIAS;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_16F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_16F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_16F, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_bias_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- at::BFloat16* A,
- int lda,
- at::BFloat16* B,
- int ldb,
- const float *beta, /* host pointer */
- at::BFloat16* C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* bias) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DEFAULT;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (use_bias) {
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- epilogue = CUBLASLT_EPILOGUE_BIAS;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_16BF, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_16BF, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_16BF, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_bias_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- double* A,
- int lda,
- double* B,
- int ldb,
- const float *beta, /* host pointer */
- double* C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* bias) {
- return 1;
- }
- int gemm_bias_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- float *A,
- int lda,
- float *B,
- int ldb,
- const float *beta, /* host pointer */
- float *C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* bias) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DEFAULT;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (use_bias) {
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- epilogue = CUBLASLT_EPILOGUE_BIAS;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_32F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_32F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_32F, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- &heuristicResult.algo,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_bias_gelu_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- at::Half* A,
- int lda,
- at::Half* B,
- int ldb,
- const float *beta, /* host pointer */
- at::Half* C,
- int64_t ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* gelu_in,
- const void* bias) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_GELU_AUX;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
-
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER, &gelu_in, sizeof(gelu_in));
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD, &ldc, sizeof(ldc));
- if (use_bias) {
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- epilogue = CUBLASLT_EPILOGUE_GELU_AUX_BIAS;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_16F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_16F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_16F, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_bias_gelu_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- at::BFloat16* A,
- int lda,
- at::BFloat16* B,
- int ldb,
- const float *beta, /* host pointer */
- at::BFloat16* C,
- int64_t ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* gelu_in,
- const void* bias) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_GELU_AUX;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
-
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER, &gelu_in, sizeof(gelu_in));
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD, &ldc, sizeof(ldc));
- if (use_bias) {
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- epilogue = CUBLASLT_EPILOGUE_GELU_AUX_BIAS;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_16BF, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_16BF, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_16BF, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_bias_gelu_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- double* A,
- int lda,
- double* B,
- int ldb,
- const float *beta, /* host pointer */
- double* C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void *gelu_in,
- const void* bias) {
- return 1;
- }
- int gemm_bias_gelu_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- float *A,
- int lda,
- float *B,
- int ldb,
- const float *beta, /* host pointer */
- float *C,
- int64_t ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* gelu_in,
- const void* bias) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_GELU_AUX;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
-
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER, &gelu_in, sizeof(gelu_in));
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD, &ldc, sizeof(ldc));
- if (use_bias) {
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- epilogue = CUBLASLT_EPILOGUE_GELU_AUX_BIAS;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_32F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_32F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_32F, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_bgradb_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- at::Half* A,
- int lda,
- at::Half* B,
- int ldb,
- const float *beta, /* host pointer */
- at::Half* C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* bgrad) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DEFAULT;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (use_bias) {
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bgrad, sizeof(bgrad));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- epilogue = CUBLASLT_EPILOGUE_BGRADB;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_16F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_16F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_16F, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_bgradb_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- at::BFloat16* A,
- int lda,
- at::BFloat16* B,
- int ldb,
- const float *beta, /* host pointer */
- at::BFloat16* C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* bgrad) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DEFAULT;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (use_bias) {
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bgrad, sizeof(bgrad));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- epilogue = CUBLASLT_EPILOGUE_BGRADB;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_16BF, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_16BF, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_16BF, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_bgradb_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- double* A,
- int lda,
- double* B,
- int ldb,
- const float *beta, /* host pointer */
- double* C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* bgrad) {
- return 1;
- }
- int gemm_bgradb_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- float *A,
- int lda,
- float *B,
- int ldb,
- const float *beta, /* host pointer */
- float *C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- bool use_bias,
- const void* bgrad) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DEFAULT;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (use_bias) {
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bgrad, sizeof(bgrad));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- epilogue = CUBLASLT_EPILOGUE_BGRADB;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_32F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_32F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_32F, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- &heuristicResult.algo,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_dgelu_bgradb_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- at::Half* A,
- int lda,
- at::Half* B,
- int ldb,
- const float *beta, /* host pointer */
- at::Half* C,
- int64_t ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- const void *gelu_in,
- const void *bgrad) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DGELU_BGRAD;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bgrad, sizeof(bgrad));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER, &gelu_in, sizeof(gelu_in));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD, &ldc, sizeof(ldc));
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_16F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_16F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_16F, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_dgelu_bgradb_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- at::BFloat16* A,
- int lda,
- at::BFloat16* B,
- int ldb,
- const float *beta, /* host pointer */
- at::BFloat16* C,
- int64_t ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- const void *gelu_in,
- const void *bgrad) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DGELU_BGRAD;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bgrad, sizeof(bgrad));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER, &gelu_in, sizeof(gelu_in));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD, &ldc, sizeof(ldc));
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_16BF, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_16BF, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_16BF, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- int gemm_dgelu_bgradb_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- double *A,
- int lda,
- double *B,
- int ldb,
- const float *beta, /* host pointer */
- double *C,
- int ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- const void *gelu_in,
- const void *bgrad) {
- return 1;
- }
- int gemm_dgelu_bgradb_lt(
- cublasLtHandle_t ltHandle,
- cublasOperation_t transa,
- cublasOperation_t transb,
- int m,
- int n,
- int k,
- const float *alpha, /* host pointer */
- float *A,
- int lda,
- float *B,
- int ldb,
- const float *beta, /* host pointer */
- float *C,
- int64_t ldc,
- void *workspace,
- size_t workspaceSize,
- cudaStream_t stream,
- const void *gelu_in,
- const void *bgrad) {
- cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
- cublasLtMatmulDescOpaque_t operationDesc = {};
- cublasLtMatrixLayoutOpaque_t Adesc = {}, Bdesc = {}, Cdesc = {};
- cublasLtMatmulPreferenceOpaque_t preference = {};
- int returnedResults = 0;
- cublasLtMatmulHeuristicResult_t heuristicResult = {};
- cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_DGELU_BGRAD;
- // Create operation descriptor; see cublasLtMatmulDescAttributes_t
- // for details about defaults; here we just set the transforms for
- // A and B.
- status = cublasLtMatmulDescInit(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bgrad, sizeof(bgrad));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER, &gelu_in, sizeof(gelu_in));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD, &ldc, sizeof(ldc));
- status = cublasLtMatmulDescSetAttribute(&operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogue, sizeof(epilogue));
- if (status != CUBLAS_STATUS_SUCCESS) {
- goto CLEANUP;
- }
- // Create matrix descriptors. Not setting any extra attributes.
- status = cublasLtMatrixLayoutInit(
- &Adesc, CUDA_R_32F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(
- &Bdesc, CUDA_R_32F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatrixLayoutInit(&Cdesc, CUDA_R_32F, m, n, ldc);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // Create preference handle; In general, extra attributes can be
- // used here to disable tensor ops or to make sure algo selected
- // will work with badly aligned A, B, C. However, for simplicity
- // here we assume A,B,C are always well aligned (e.g., directly
- // come from cudaMalloc)
- status = cublasLtMatmulPreferenceInit(&preference);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- status = cublasLtMatmulPreferenceSetAttribute(
- &preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize));
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- // We just need the best available heuristic to try and run matmul.
- // There is no guarantee that this will work. For example, if A is
- // badly aligned, you can request more (e.g. 32) algos and try to
- // run them one by one until something works.
- status = cublasLtMatmulAlgoGetHeuristic(
- ltHandle, &operationDesc, &Adesc, &Bdesc, &Cdesc, &Cdesc, &preference, 1, &heuristicResult, &returnedResults);
- if (status != CUBLAS_STATUS_SUCCESS) goto CLEANUP;
- if (returnedResults == 0) {
- status = CUBLAS_STATUS_NOT_SUPPORTED;
- goto CLEANUP;
- }
- status = cublasLtMatmul(ltHandle,
- &operationDesc,
- alpha,
- A,
- &Adesc,
- B,
- &Bdesc,
- beta,
- C,
- &Cdesc,
- C,
- &Cdesc,
- //&heuristicResult.algo,
- NULL,
- workspace,
- workspaceSize,
- stream);
- CLEANUP:
- // Descriptors are no longer needed as all GPU work was already
- // enqueued.
- return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
- }
- #endif
- template <typename T>
- int linear_bias_forward_cuda(at::Tensor input, T *weight, at::Tensor bias, int in_features, int batch_size, int out_features, at::Tensor output, void *lt_workspace) {
- cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
- // Get the stream from cublas handle to reuse for biasReLU kernel.
- cudaStream_t stream;
- cublasGetStream(handle, &stream);
- const float alpha = 1.0;
- const float beta_zero = 0.0;
- const float beta_one = 1.0;
- int status = 1;
- #if defined(CUBLAS_VERSION) && CUBLAS_VERSION >= 11600
- status = gemm_bias_lt(
- (cublasLtHandle_t)handle,
- CUBLAS_OP_T,
- CUBLAS_OP_N,
- out_features,
- batch_size,
- in_features,
- &alpha, /* host pointer */
- weight,
- in_features,
- input.data_ptr<T>(),
- in_features,
- &beta_zero, /* host pointer */
- output.data_ptr<T>(),
- out_features,
- lt_workspace,
- 1 << 22,
- stream,
- true,
- static_cast<const void*>(bias.data_ptr<T>()));
- #endif
- if (status != 0){
- output.copy_(bias);
- status = gemm_bias(
- handle,
- CUBLAS_OP_T,
- CUBLAS_OP_N,
- out_features,
- batch_size,
- in_features,
- &alpha,
- weight,
- in_features,
- input.data_ptr<T>(),
- in_features,
- &beta_one,
- output.data_ptr<T>(),
- out_features);
- }
- return status;
- }
-
- template <typename T>
- int linear_bias_backward_cuda(T *input, T *weight, T *d_output, int in_features, int batch_size, int out_features, T *d_weight, T *d_bias, T *d_input, void *lt_workspace) {
- cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
- // Get the stream from cublas handle to reuse for biasReLU kernel.
- cudaStream_t stream;
- cublasGetStream(handle, &stream);
- const float alpha = 1.0;
- const float beta_zero = 0.0;
- int status = 1;
- #if defined(CUBLAS_VERSION) && CUBLAS_VERSION >= 11600
- status = gemm_bgradb_lt(
- (cublasLtHandle_t)handle,
- CUBLAS_OP_N,
- CUBLAS_OP_T,
- in_features,
- out_features,
- batch_size,
- &alpha, /* host pointer */
- input,
- in_features,
- d_output,
- out_features,
- &beta_zero, /* host pointer */
- d_weight,
- in_features,
- lt_workspace,
- 1 << 22,
- stream,
- true,
- static_cast<const void*>(d_bias));
- #endif
-
- if (status != 0){
-
- status = gemm_bias(
- handle,
- CUBLAS_OP_N,
- CUBLAS_OP_T,
- in_features,
- out_features,
- batch_size,
- &alpha,
- input,
- in_features,
- d_output,
- out_features,
- &beta_zero,
- d_weight,
- in_features);
- }
-
- status = gemm_bias(
- handle,
- CUBLAS_OP_N,
- CUBLAS_OP_N,
- in_features,
- batch_size,
- out_features,
- &alpha,
- weight,
- in_features,
- d_output,
- out_features,
- &beta_zero,
- d_input,
- in_features);
- return status;
- }
- template <typename T>
- int linear_gelu_linear_forward_cuda(T *input, T *weight1, T *bias1, T *weight2, T *bias2, int in_features, int hidden_features, int batch_size, int out_features, T *output1, T *output2, T *gelu_in, void *lt_workspace) {
- cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
- // Get the stream from cublas handle to reuse for biasReLU kernel.
- cudaStream_t stream;
- cublasGetStream(handle, &stream);
- const float alpha = 1.0;
- const float beta_zero = 0.0;
- int status = 1;
- #if defined(CUBLAS_VERSION) && CUBLAS_VERSION >= 11600
- status = gemm_bias_gelu_lt(
- (cublasLtHandle_t)handle,
- CUBLAS_OP_T,
- CUBLAS_OP_N,
- hidden_features,
- batch_size,
- in_features,
- &alpha, /* host pointer */
- weight1,
- in_features,
- input,
- in_features,
- &beta_zero, /* host pointer */
- output1,
- hidden_features,
- lt_workspace,
- 1 << 22,
- stream,
- true,
- static_cast<const void*>(gelu_in),
- static_cast<const void*>(bias1));
- status = gemm_bias_lt(
- (cublasLtHandle_t)handle,
- CUBLAS_OP_T,
- CUBLAS_OP_N,
- out_features,
- batch_size,
- hidden_features,
- &alpha, /* host pointer */
- weight2,
- hidden_features,
- output1,
- hidden_features,
- &beta_zero, /* host pointer */
- output2,
- out_features,
- lt_workspace,
- 1 << 22,
- stream,
- true,
- static_cast<const void*>(bias2));
- return status;
- #else
- return 1;
- #endif
- }
- template <typename T>
- int linear_gelu_linear_backward_cuda(T *input, T *gelu_in, T *output1, T *weight1, T *weight2, T *d_output1, T *d_output2, int in_features, int batch_size, int hidden_features, int out_features, T *d_weight1, T *d_weight2, T *d_bias1, T *d_bias2, T *d_input, void *lt_workspace) {
- cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
- // Get the stream from cublas handle to reuse for biasReLU kernel.
- cudaStream_t stream;
- cublasGetStream(handle, &stream);
- const float alpha = 1.0;
- const float beta_zero = 0.0;
- int status = 1;
- #if defined(CUBLAS_VERSION) && CUBLAS_VERSION >= 11600
- //wgrad for first gemm
- status = gemm_bgradb_lt(
- (cublasLtHandle_t)handle,
- CUBLAS_OP_N,
- CUBLAS_OP_T,
- hidden_features,
- out_features,
- batch_size,
- &alpha, /* host pointer */
- output1,
- hidden_features,
- d_output2,
- out_features,
- &beta_zero, /* host pointer */
- d_weight2,
- hidden_features,
- lt_workspace,
- 1 << 22,
- stream,
- true,
- static_cast<const void*>(d_bias2));
- //dgrad for second GEMM
- status = gemm_dgelu_bgradb_lt(
- (cublasLtHandle_t)handle,
- CUBLAS_OP_N,
- CUBLAS_OP_N,
- hidden_features,
- batch_size,
- out_features,
- &alpha, /* host pointer */
- weight2,
- hidden_features,
- d_output2,
- out_features,
- &beta_zero, /* host pointer */
- d_output1,
- hidden_features,
- lt_workspace,
- 1 << 22,
- stream,
- static_cast<const void*>(gelu_in),
- static_cast<const void*>(d_bias1));
- //wgrad for the first GEMM
- status = gemm_bias(
- handle,
- CUBLAS_OP_N,
- CUBLAS_OP_T,
- in_features,
- hidden_features,
- batch_size,
- &alpha,
- input,
- in_features,
- d_output1,
- hidden_features,
- &beta_zero,
- d_weight1,
- in_features);
- //dgrad for the first GEMM
- status = gemm_bias(
- handle,
- CUBLAS_OP_N,
- CUBLAS_OP_N,
- in_features,
- batch_size,
- hidden_features,
- &alpha,
- weight1,
- in_features,
- d_output1,
- hidden_features,
- &beta_zero,
- d_input,
- in_features);
- #endif
- return status;
- }
- template int linear_bias_forward_cuda<at::Half>(at::Tensor input, at::Half *weight, at::Tensor bias, int in_features, int batch_size, int out_features, at::Tensor output, void *lt_workspace);
- template int linear_bias_forward_cuda<float>(at::Tensor input, float *weight, at::Tensor bias, int in_features, int batch_size, int out_features, at::Tensor output, void *lt_workspace);
- template int linear_bias_forward_cuda<double>(at::Tensor input, double *weight, at::Tensor bias, int in_features, int batch_size, int out_features, at::Tensor output, void *lt_workspace);
- template int linear_bias_backward_cuda<at::Half>(at::Half *input, at::Half *weight, at::Half *d_output, int in_features, int batch_size, int out_features, at::Half *d_weight, at::Half *d_bias, at::Half *d_input, void *lt_workspace) ;
- template int linear_bias_backward_cuda<float>(float *input, float *weight, float *d_output, int in_features, int batch_size, int out_features, float *d_weight, float *d_bias, float *d_input, void *lt_workspace) ;
- template int linear_bias_backward_cuda<double>(double *input, double *weight, double *d_output, int in_features, int batch_size, int out_features, double *d_weight, double *d_bias, double *d_input, void *lt_workspace) ;
- template int linear_gelu_linear_forward_cuda<at::Half>(at::Half *input, at::Half *weight1, at::Half *bias1, at::Half *weight2, at::Half *bias2, int in_features, int hidden_features, int batch_size, int out_features, at::Half *output1, at::Half *output2, at::Half *gelu_in, void *lt_workspace) ;
- template int linear_gelu_linear_forward_cuda<float>(float *input, float *weight1, float *bias1, float *weight2, float *bias2, int in_features, int hidden_features, int batch_size, int out_features, float *output1, float *output2, float *gelu_in, void *lt_workspace);
- template int linear_gelu_linear_forward_cuda<double>(double *input, double *weight1, double *bias1, double *weight2, double *bias2, int in_features, int hidden_features, int batch_size, int out_features, double *output1, double *output2, double *gelu_in, void *lt_workspace) ;
- template int linear_gelu_linear_backward_cuda<at::Half>(at::Half *input, at::Half *gelu_in, at::Half *output1, at::Half *weight1, at::Half *weight2, at::Half *d_output1, at::Half *d_output2, int in_features, int batch_size, int hidden_features, int out_features, at::Half *d_weight1, at::Half *d_weight2, at::Half *d_bias1, at::Half *d_bias2, at::Half *d_input, void *lt_workspace);
- template int linear_gelu_linear_backward_cuda<float>(float *input, float *gelu_in, float *output1, float *weight1, float *weight2, float *d_output1, float *d_output2, int in_features, int batch_size, int hidden_features, int out_features, float *d_weight1, float *d_weight2, float *d_bias1, float *d_bias2, float *d_input, void *lt_workspace);
- template int linear_gelu_linear_backward_cuda<double>(double *input, double *gelu_in, double *output1, double *weight1, double *weight2, double *d_output1, double *d_output2, int in_features, int batch_size, int hidden_features, int out_features, double *d_weight1, double *d_weight2, double *d_bias1, double *d_bias2, double *d_input, void *lt_workspace);
- template int linear_bias_forward_cuda<at::BFloat16>(at::Tensor input, at::BFloat16 *weight, at::Tensor bias, int in_features, int batch_size, int out_features, at::Tensor output, void *lt_workspace);
- template int linear_bias_backward_cuda<at::BFloat16>(at::BFloat16 *input, at::BFloat16 *weight, at::BFloat16 *d_output, int in_features, int batch_size, int out_features, at::BFloat16 *d_weight, at::BFloat16 *d_bias, at::BFloat16 *d_input, void *lt_workspace) ;
- template int linear_gelu_linear_forward_cuda<at::BFloat16>(at::BFloat16 *input, at::BFloat16 *weight1, at::BFloat16 *bias1, at::BFloat16 *weight2, at::BFloat16 *bias2, int in_features, int hidden_features, int batch_size, int out_features, at::BFloat16 *output1, at::BFloat16 *output2, at::BFloat16 *gelu_in, void *lt_workspace) ;
- template int linear_gelu_linear_backward_cuda<at::BFloat16>(at::BFloat16 *input, at::BFloat16 *gelu_in, at::BFloat16 *output1, at::BFloat16 *weight1, at::BFloat16 *weight2, at::BFloat16 *d_output1, at::BFloat16 *d_output2, int in_features, int batch_size, int hidden_features, int out_features, at::BFloat16 *d_weight1, at::BFloat16 *d_weight2, at::BFloat16 *d_bias1, at::BFloat16 *d_bias2, at::BFloat16 *d_input, void *lt_workspace);
|