# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Convert the Oxford pet dataset to TFRecord for object_detection. See: O. M. Parkhi, A. Vedaldi, A. Zisserman, C. V. Jawahar Cats and Dogs IEEE Conference on Computer Vision and Pattern Recognition, 2012 http://www.robots.ox.ac.uk/~vgg/data/pets/ Example usage: ./create_pet_tf_record --data_dir=/home/user/pet \ --output_dir=/home/user/pet/output """ import hashlib import io import logging import os import random import re from lxml import etree import PIL.Image import tensorflow as tf from object_detection.utils import dataset_util from object_detection.utils import label_map_util def dict_to_tf_example(data, label_map_dict, image_subdirectory, ignore_difficult_instances=False): """Convert XML derived dict to tf.Example proto. Notice that this function normalizes the bounding box coordinates provided by the raw data. Args: data: dict holding PASCAL XML fields for a single image (obtained by running dataset_util.recursive_parse_xml_to_dict) label_map_dict: A map from string label names to integers ids. image_subdirectory: String specifying subdirectory within the Pascal dataset directory holding the actual image data. ignore_difficult_instances: Whether to skip difficult instances in the dataset (default: False). Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ img_path = os.path.join(image_subdirectory, data['filename']) with tf.gfile.GFile(img_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() width = int(data['size']['width']) height = int(data['size']['height']) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] for obj in data['object']: difficult_obj.append(int(0)) xmin.append(float(obj['bndbox']['xmin']) / width) ymin.append(float(obj['bndbox']['ymin']) / height) xmax.append(float(obj['bndbox']['xmax']) / width) ymax.append(float(obj['bndbox']['ymax']) / height) class_name = obj['name'] classes_text.append(class_name.encode('utf8')) classes.append(label_map_dict[class_name]) truncated.append(int(0)) poses.append('Unspecified'.encode('utf8')) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/source_id': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), })) return example def create_tf_record(output_filename, label_map_dict, annotations_dir, image_dir, examples): """Creates a TFRecord file from examples. Args: output_filename: Path to where output file is saved. label_map_dict: The label map dictionary. annotations_dir: Directory where annotation files are stored. image_dir: Directory where image files are stored. examples: Examples to parse and save to tf record. """ writer = tf.python_io.TFRecordWriter(output_filename) for idx, example in enumerate(examples): if idx % 100 == 0: logging.info('On image %d of %d', idx, len(examples)) print('On image %d of %d', idx, len(examples)) path = os.path.join(annotations_dir, 'xmls', example + '.xml') if not os.path.exists(path): logging.warning('Could not find %s, ignoring example.', path) continue with tf.gfile.GFile(path, 'r') as fid: xml_str = fid.read() xml = etree.fromstring(xml_str) data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation'] tf_example = dict_to_tf_example(data, label_map_dict, image_dir) writer.write(tf_example.SerializeToString()) writer.close() def main(_): label_map_dict = label_map_util.get_label_map_dict('/tensorflow/input/annotations/label_map.pbtxt') logging.info('Reading from Pet dataset.') image_dir = '/tensorflow/input/images' annotations_dir = '/tensorflow/input/annotations' examples_path = os.path.join(annotations_dir, 'trainval.txt') examples_list = dataset_util.read_examples_list(examples_path) # Test images are not included in the downloaded data set, so we shall perform # our own split. random.seed(42) random.shuffle(examples_list) num_examples = len(examples_list) num_train = int(0.7 * num_examples) train_examples = examples_list[:num_train] val_examples = examples_list[num_train:] print('%d training and %d validation examples.', len(train_examples), len(val_examples)) train_output_path = '/tensorflow/input/train.record' val_output_path = '/tensorflow/input/val.record' create_tf_record(train_output_path, label_map_dict, annotations_dir, image_dir, train_examples) create_tf_record(val_output_path, label_map_dict, annotations_dir, image_dir, val_examples) if __name__ == '__main__': tf.app.run()