# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- import os import time import json import random import argparse import datetime import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import accuracy, AverageMeter from config import get_config from models import build_model from data import build_loader from lr_scheduler import build_scheduler from optimizer import build_optimizer from logger import create_logger from utils import load_checkpoint, load_pretrained, save_checkpoint, NativeScalerWithGradNormCount, auto_resume_helper, \ reduce_tensor # pytorch major version (1.x or 2.x) PYTORCH_MAJOR_VERSION = int(torch.__version__.split('.')[0]) lists = [] def parse_option(): parser = argparse.ArgumentParser('Swin Transformer training and evaluation script', add_help=False) parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', ) parser.add_argument( "--opts", help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+', ) # easy config modification parser.add_argument('--batch-size', type=int, help="batch size for single GPU") parser.add_argument('--data-path', type=str, help='path to dataset') parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset') parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'], help='no: no cache, ' 'full: cache all data, ' 'part: sharding the dataset into nonoverlapping pieces and only cache one piece') parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight') parser.add_argument('--resume', help='resume from checkpoint') parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps") parser.add_argument('--use-checkpoint', action='store_true', help="whether to use gradient checkpointing to save memory") parser.add_argument('--disable_amp', action='store_true', help='Disable pytorch amp') parser.add_argument('--amp-opt-level', type=str, choices=['O0', 'O1', 'O2'], help='mixed precision opt level, if O0, no amp is used (deprecated!)') parser.add_argument('--output', default='output', type=str, metavar='PATH', help='root of output folder, the full path is // (default: output)') parser.add_argument('--tag', help='tag of experiment') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--throughput', action='store_true', help='Test throughput only') # distributed training # for pytorch >= 2.0, use `os.environ['LOCAL_RANK']` instead # (see https://pytorch.org/docs/stable/distributed.html#launch-utility) if PYTORCH_MAJOR_VERSION == 1: parser.add_argument("--local_rank", type=int, required=True, help='local rank for DistributedDataParallel') # for acceleration parser.add_argument('--fused_window_process', action='store_true', help='Fused window shift & window partition, similar for reversed part.') parser.add_argument('--fused_layernorm', action='store_true', help='Use fused layernorm.') ## overwrite optimizer in config (*.yaml) if specified, e.g., fused_adam/fused_lamb parser.add_argument('--optim', type=str, help='overwrite optimizer if provided, can be adamw/sgd/fused_adam/fused_lamb.') args, unparsed = parser.parse_known_args() config = get_config(args) return args, config def main(config): dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn = build_loader(config) f = open("v.txt", "w") f.write('\n'.join([os.path.split(val[0])[-1] for val in dataset_val.imgs])) f.close() logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}") model = build_model(config) logger.info(str(model)) n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) logger.info(f"number of params: {n_parameters}") if hasattr(model, 'flops'): flops = model.flops() logger.info(f"number of GFLOPs: {flops / 1e9}") model.cuda() model_without_ddp = model optimizer = build_optimizer(config, model) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False) loss_scaler = NativeScalerWithGradNormCount() if config.TRAIN.ACCUMULATION_STEPS > 1: lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train) // config.TRAIN.ACCUMULATION_STEPS) else: lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train)) if config.AUG.MIXUP > 0.: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif config.MODEL.LABEL_SMOOTHING > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=config.MODEL.LABEL_SMOOTHING) else: criterion = torch.nn.CrossEntropyLoss() max_accuracy = 0.0 if config.TRAIN.AUTO_RESUME: resume_file = auto_resume_helper(config.OUTPUT) if resume_file: if config.MODEL.RESUME: logger.warning(f"auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}") config.defrost() config.MODEL.RESUME = resume_file config.freeze() logger.info(f'auto resuming from {resume_file}') else: logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume') if config.MODEL.RESUME: max_accuracy = load_checkpoint(config, model_without_ddp, optimizer, lr_scheduler, loss_scaler, logger) acc1, acc5, loss = validate(config, data_loader_val, model) logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%") if config.EVAL_MODE: return if config.MODEL.PRETRAINED and (not config.MODEL.RESUME): load_pretrained(config, model_without_ddp, logger) acc1, acc5, loss = validate(config, data_loader_val, model) logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%") if config.THROUGHPUT_MODE: throughput(data_loader_val, model, logger) return logger.info("Start training") start_time = time.time() for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS): data_loader_train.sampler.set_epoch(epoch) train_one_epoch(config, model, criterion, data_loader_train, optimizer, epoch, mixup_fn, lr_scheduler, loss_scaler) if dist.get_rank() == 0 and (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)): save_checkpoint(config, epoch, model_without_ddp, max_accuracy, optimizer, lr_scheduler, loss_scaler, logger) acc1, acc5, loss = validate(config, data_loader_val, model) logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%") max_accuracy = max(max_accuracy, acc1) logger.info(f'Max accuracy: {max_accuracy:.2f}%') total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logger.info('Training time {}'.format(total_time_str)) def train_one_epoch(config, model, criterion, data_loader, optimizer, epoch, mixup_fn, lr_scheduler, loss_scaler): model.train() optimizer.zero_grad() num_steps = len(data_loader) batch_time = AverageMeter() loss_meter = AverageMeter() norm_meter = AverageMeter() scaler_meter = AverageMeter() start = time.time() end = time.time() for idx, (samples, targets) in enumerate(data_loader): samples = samples.cuda(non_blocking=True) targets = targets.cuda(non_blocking=True) if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE): outputs = model(samples) loss = criterion(outputs, targets) loss = loss / config.TRAIN.ACCUMULATION_STEPS # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order grad_norm = loss_scaler(loss, optimizer, clip_grad=config.TRAIN.CLIP_GRAD, parameters=model.parameters(), create_graph=is_second_order, update_grad=(idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0) if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0: optimizer.zero_grad() lr_scheduler.step_update((epoch * num_steps + idx) // config.TRAIN.ACCUMULATION_STEPS) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() loss_meter.update(loss.item(), targets.size(0)) if grad_norm is not None: # loss_scaler return None if not update norm_meter.update(grad_norm) scaler_meter.update(loss_scale_value) batch_time.update(time.time() - end) end = time.time() if idx % config.PRINT_FREQ == 0: lr = optimizer.param_groups[0]['lr'] wd = optimizer.param_groups[0]['weight_decay'] memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) etas = batch_time.avg * (num_steps - idx) logger.info( f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t' f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t wd {wd:.4f}\t' f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t' f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t' f'loss_scale {scaler_meter.val:.4f} ({scaler_meter.avg:.4f})\t' f'mem {memory_used:.0f}MB') epoch_time = time.time() - start logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}") @torch.no_grad() def validate(config, data_loader, model): criterion = torch.nn.CrossEntropyLoss() model.eval() batch_time = AverageMeter() loss_meter = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() end = time.time() for idx, (images, target) in enumerate(data_loader): images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE): output = model(images) # measure accuracy and record loss # print(idx) output1 = output # print(idx, torch.softmax(output1, 1, torch.float).argmax(dim=1).item()) lists.append('{} {}'.format(idx, torch.softmax(output1, 1, torch.float).argmax(dim=1).item())) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 2)) acc1 = reduce_tensor(acc1) acc5 = reduce_tensor(acc5) loss = reduce_tensor(loss) loss_meter.update(loss.item(), target.size(0)) acc1_meter.update(acc1.item(), target.size(0)) acc5_meter.update(acc5.item(), target.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() # if idx % config.PRINT_FREQ == 0: if idx % 40655 == 0: str = '\n' f = open("k.txt", "w") f.write(str.join(lists)) f.close() if idx % 1000 == 0: memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) logger.info( f'Test: [{idx}/{len(data_loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t' f'Mem {memory_used:.0f}MB') logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg, acc5_meter.avg, loss_meter.avg @torch.no_grad() def throughput(data_loader, model, logger): model.eval() for idx, (images, _) in enumerate(data_loader): images = images.cuda(non_blocking=True) batch_size = images.shape[0] for i in range(50): model(images) torch.cuda.synchronize() logger.info(f"throughput averaged with 30 times") tic1 = time.time() for i in range(30): model(images) torch.cuda.synchronize() tic2 = time.time() logger.info(f"batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}") return if __name__ == '__main__': args, config = parse_option() if config.AMP_OPT_LEVEL: print("[warning] Apex amp has been deprecated, please use pytorch amp instead!") if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: rank = int(os.environ["RANK"]) world_size = int(os.environ['WORLD_SIZE']) print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}") else: rank = -1 world_size = -1 torch.cuda.set_device(config.LOCAL_RANK) torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank) torch.distributed.barrier() seed = config.SEED + dist.get_rank() torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) random.seed(seed) cudnn.benchmark = True # linear scale the learning rate according to total batch size, may not be optimal linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0 linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0 linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0 # gradient accumulation also need to scale the learning rate if config.TRAIN.ACCUMULATION_STEPS > 1: linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS config.defrost() config.TRAIN.BASE_LR = linear_scaled_lr config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr config.TRAIN.MIN_LR = linear_scaled_min_lr config.freeze() os.makedirs(config.OUTPUT, exist_ok=True) logger = create_logger(output_dir=config.OUTPUT, dist_rank=dist.get_rank(), name=f"{config.MODEL.NAME}") if dist.get_rank() == 0: path = os.path.join(config.OUTPUT, "config.json") with open(path, "w") as f: f.write(config.dump()) logger.info(f"Full config saved to {path}") # print config logger.info(config.dump()) logger.info(json.dumps(vars(args))) main(config)