import logging import torch from torch.testing._internal import common_utils logging.getLogger("torch").setLevel(logging.WARNING) from apex.transformer import parallel_state from apex.transformer import tensor_parallel from apex.transformer.testing.distributed_test_base import NcclDistributedTestBase from apex.transformer.testing.distributed_test_base import UccDistributedTestBase logging.getLogger("apex").setLevel(logging.WARNING) class TransformerRandomTestBase: def test_set_cuda_rng_state(self): for tensor_model_parallel_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_parallel_world_size: continue msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size ) size, seed = 123, 1234 torch.cuda.manual_seed(seed) tensor = torch.cuda.FloatTensor(size) rng_state = torch.cuda.get_rng_state() rng_state_clone = rng_state.clone() for _ in range(5): torch.randn(size, out=tensor) result_1 = tensor.clone() self.assertEqual(rng_state.sub(rng_state_clone).max(), 0, msg=msg) self.assertGreater( torch.cuda.get_rng_state().sub(rng_state_clone).max(), 0, msg=msg, ) new_rng_state = torch.cuda.get_rng_state() self.assertGreater(new_rng_state.sub(rng_state).max(), 0, msg=msg) tensor_parallel.random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) tensor_parallel.random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) result_2 = tensor.clone() self.assertEqual(result_2, result_1, msg=msg) self.assertEqual(rng_state.sub(rng_state_clone).max(), 0, msg=msg) parallel_state.destroy_model_parallel() def test_cuda_rng_tracker(self): for tensor_model_parallel_world_size in range(1, self.world_size + 1): if self.world_size % tensor_model_parallel_world_size: continue msg = f"tensor_model_parallel_world_size: {tensor_model_parallel_world_size}" parallel_state.initialize_model_parallel( tensor_model_parallel_size_=tensor_model_parallel_world_size ) seed_1, seed_2, size = 1234, 4321, [12, 21] tensor = torch.cuda.FloatTensor(size) torch.cuda.manual_seed(seed_1) torch.randn(size, out=tensor) target_11 = tensor.clone() torch.randn(size, out=tensor) target_12 = tensor.clone() torch.cuda.manual_seed(seed_2) torch.randn(size, out=tensor) targt_21 = tensor.clone() torch.randn(size, out=tensor) target_22 = tensor.clone() torch.cuda.manual_seed(seed_1) tensor_parallel.random.get_cuda_rng_tracker().add("test", seed_2) torch.randn(size, out=tensor) result_11 = tensor.clone() with tensor_parallel.random.get_cuda_rng_tracker().fork("test"): torch.randn(size, out=tensor) result_21 = tensor.clone() torch.randn(size, out=tensor) result_12 = tensor.clone() with tensor_parallel.random.get_cuda_rng_tracker().fork("test"): torch.randn(size, out=tensor) result_22 = tensor.clone() self.assertEqual(target_11, result_11, msg=msg) self.assertEqual(target_12, result_12, msg=msg) self.assertEqual(targt_21, result_21, msg=msg) self.assertEqual(target_22, result_22, msg=msg) self.assertNotEqual(result_11, result_21, msg=msg) self.assertNotEqual(result_21, result_22, msg=msg) tensor_parallel.random.get_cuda_rng_tracker().reset() parallel_state.destroy_model_parallel() class NcclTransformerRandomTest(TransformerRandomTestBase, NcclDistributedTestBase): pass class UccTransformerRandomTest(TransformerRandomTestBase, UccDistributedTestBase): pass if __name__ == "__main__": common_utils.run_tests()