# Mixed Precision DCGAN Training in PyTorch `main_amp.py` is based on [https://github.com/pytorch/examples/tree/master/dcgan](https://github.com/pytorch/examples/tree/master/dcgan). It implements Automatic Mixed Precision (Amp) training of the DCGAN example for different datasets. Command-line flags forwarded to `amp.initialize` are used to easily manipulate and switch between various pure and mixed precision "optimization levels" or `opt_level`s. For a detailed explanation of `opt_level`s, see the [updated API guide](https://nvidia.github.io/apex/amp.html). We introduce these changes to the PyTorch DCGAN example as described in the [Multiple models/optimizers/losses](https://nvidia.github.io/apex/advanced.html#multiple-models-optimizers-losses) section of the documentation:: ``` # Added after models and optimizers construction [netD, netG], [optimizerD, optimizerG] = amp.initialize( [netD, netG], [optimizerD, optimizerG], opt_level=opt.opt_level, num_losses=3) ... # loss.backward() changed to: with amp.scale_loss(errD_real, optimizerD, loss_id=0) as errD_real_scaled: errD_real_scaled.backward() ... with amp.scale_loss(errD_fake, optimizerD, loss_id=1) as errD_fake_scaled: errD_fake_scaled.backward() ... with amp.scale_loss(errG, optimizerG, loss_id=2) as errG_scaled: errG_scaled.backward() ``` Note that we use different `loss_scalers` for each computed loss. Using a separate loss scaler per loss is [optional, not required](https://nvidia.github.io/apex/advanced.html#optionally-have-amp-use-a-different-loss-scaler-per-loss). To improve the numerical stability, we swapped `nn.Sigmoid() + nn.BCELoss()` to `nn.BCEWithLogitsLoss()`. With the new Amp API **you never need to explicitly convert your model, or the input data, to half().** "Pure FP32" training: ``` $ python main_amp.py --opt_level O0 ``` Recommended mixed precision training: ``` $ python main_amp.py --opt_level O1 ``` Have a look at the original [DCGAN example](https://github.com/pytorch/examples/tree/master/dcgan) for more information about the used arguments. To enable mixed precision training, we introduce the `--opt_level` argument.