#include #include #include #include #include // Another possibility: // #include #include #include "type_shim.h" #include "multi_tensor_apply.cuh" #define BLOCK_SIZE 512 #define ILP 4 template __device__ __forceinline__ bool is_aligned(T* p){ return ((uint64_t)p) % (ILP*sizeof(T)) == 0; } template __device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){ typedef typename std::aligned_storage::type LT; ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset]; } template struct L2NormFunctor { __device__ __forceinline__ void operator()( int chunk_size, volatile int* noop_gmem, TensorListMetadata<1>& tl, float* output, float* output_per_tensor, bool per_tensor, int max_chunks_per_tensor) { // I'd like this kernel to propagate infs/nans. // if(*noop_gmem == 1) // return; int tensor_loc = tl.block_to_tensor[blockIdx.x]; int chunk_idx = tl.block_to_chunk[blockIdx.x]; int n = tl.sizes[tensor_loc]; x_t* x = (x_t*)tl.addresses[0][tensor_loc]; x += chunk_idx*chunk_size; n -= chunk_idx*chunk_size; __shared__ float s_vals[512]; float vals[ILP]; // = {0}; // this probably works too but I want to be sure... x_t r_x[ILP]; for(int i = 0; i < ILP; i++) { vals[i] = 0.f; r_x[i] = 0; } // to make things simple, we put aligned case in a different code path if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x)) { for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x) { // load load_store(r_x, x, 0 , i_start); #pragma unroll for(int ii = 0; ii < ILP; ii++) { float next = static_cast(r_x[ii]); vals[ii] += next*next; } } } else { for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP) { #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) { float next = static_cast(x[i]); vals[ii] += next*next; } } } } float val = 0.f; for(int i = 0; i < ILP; i++) val += vals[i]; float final = reduce_block_into_lanes(s_vals, val); if(threadIdx.x == 0) { if(!isfinite(final)) *noop_gmem = 1; // Blindly fire off a write. These will race but that's ok. output[blockIdx.x] += final; if(per_tensor) output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final; } } }; template struct UnscaleL2NormFunctor { __device__ __forceinline__ void operator()( int chunk_size, volatile int* noop_gmem, TensorListMetadata<1>& tl, const float* inv_scale, float* output, float* output_per_tensor, bool per_tensor, int max_chunks_per_tensor) { // I'd like this kernel to propagate infs/nans. // if(*noop_gmem == 1) // return; int tensor_loc = tl.block_to_tensor[blockIdx.x]; int chunk_idx = tl.block_to_chunk[blockIdx.x]; int n = tl.sizes[tensor_loc]; x_t* x = (x_t*)tl.addresses[0][tensor_loc]; x += chunk_idx*chunk_size; n -= chunk_idx*chunk_size; __shared__ float s_vals[512]; float vals[ILP]; // = {0}; // this probably works too but I want to be sure... x_t r_x[ILP]; for(int i = 0; i < ILP; i++) { vals[i] = 0.f; r_x[i] = 0; } // to make things simple, we put aligned case in a different code path if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x)) { for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x) { // load load_store(r_x, x, 0 , i_start); #pragma unroll for(int ii = 0; ii < ILP; ii++) { float next = static_cast(r_x[ii]) * (*inv_scale); vals[ii] += next*next; } } } else { for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP) { #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) { float next = static_cast(x[i]) * (*inv_scale); vals[ii] += next*next; } } } } float val = 0.f; for(int i = 0; i < ILP; i++) val += vals[i]; float final = reduce_block_into_lanes(s_vals, val); if(threadIdx.x == 0) { if(!isfinite(final)) *noop_gmem = 1; // Blindly fire off a write. These will race but that's ok. output[blockIdx.x] += final; if(per_tensor) output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final; } } }; // Probably better to template, but since we are not likely to support other norm template struct MaxNormFunctor { __device__ __forceinline__ void operator()( int chunk_size, volatile int* noop_gmem, TensorListMetadata<1>& tl, float* output, float* output_per_tensor, bool per_tensor, int max_chunks_per_tensor) { // I'd like this kernel to propagate infs/nans. // if(*noop_gmem == 1) // return; int tensor_loc = tl.block_to_tensor[blockIdx.x]; int chunk_idx = tl.block_to_chunk[blockIdx.x]; int n = tl.sizes[tensor_loc]; x_t* x = (x_t*)tl.addresses[0][tensor_loc]; x += chunk_idx*chunk_size; n -= chunk_idx*chunk_size; __shared__ float s_vals[512]; float vals[ILP]; // = {0}; // this probably works too but I want to be sure... x_t r_x[ILP]; for(int i = 0; i < ILP; i++) { vals[i] = 0.f; r_x[i] = 0; } // to make things simple, we put aligned case in a different code path if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x)) { for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x) { // load load_store(r_x, x, 0 , i_start); #pragma unroll for(int ii = 0; ii < ILP; ii++) { float next = static_cast(r_x[ii]); vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next)); } } } else { for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP) { #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) { float next = static_cast(x[i]); vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next)); } } } } float val = 0.f; for(int i = 0; i < ILP; i++) val = fmaxf(fabsf(val), fabsf(vals[i])); float final = reduce_block_into_lanes_max_op(s_vals, val); if(threadIdx.x == 0) { if(!isfinite(final)) *noop_gmem = 1; // Blindly fire off a write. These will race but that's ok. output[blockIdx.x] = fmaxf(fabsf(output[blockIdx.x]), fabsf(final)); if(per_tensor) output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final; } } }; __global__ void cleanup( float* output, float* output_per_tensor, float* ret, float* ret_per_tensor, bool per_tensor, int max_chunks_per_tensor) { __shared__ float vals[512]; if(blockIdx.x == 0) { float val = 0; if(threadIdx.x < 320) val = output[threadIdx.x]; float final = reduce_block_into_lanes(vals, val); if(threadIdx.x == 0) *ret = sqrt(final); } if(per_tensor) { float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor; float val = 0; for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) val += output_this_tensor[i]; float final = reduce_block_into_lanes(vals, val); if(threadIdx.x == 0) ret_per_tensor[blockIdx.x] = sqrt(final); } } __global__ void cleanup_v2( float* output, float* output_per_tensor, float* ret, float* ret_per_tensor, bool per_tensor, int max_chunks_per_tensor, int norm_type, float alpha, float beta) { __shared__ float vals[512]; if(blockIdx.x == 0) { float val = 0; if(threadIdx.x < 320) val = output[threadIdx.x]; if (norm_type == 0) { float final = reduce_block_into_lanes_max_op(vals, val); if(threadIdx.x == 0) *ret = alpha * (*ret) + beta * final; } else { float final = reduce_block_into_lanes(vals, val); if(threadIdx.x == 0) *ret = sqrt(alpha * (*ret) * (*ret) + beta * final); } } if(per_tensor) { float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor; if (norm_type == 0) { float val = 0; for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) val = fmaxf(fabsf(val), fabsf(output_this_tensor[i])); float final = reduce_block_into_lanes_max_op(vals, val); if(threadIdx.x == 0) ret_per_tensor[blockIdx.x] = alpha * ret_per_tensor[blockIdx.x] + beta * final; } else { float val = 0; for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) val += output_this_tensor[i]; float final = reduce_block_into_lanes(vals, val); if(threadIdx.x == 0) ret_per_tensor[blockIdx.x] = sqrt(alpha * ret_per_tensor[blockIdx.x] * ret_per_tensor[blockIdx.x] + beta * final); } } } std::tuple multi_tensor_l2norm_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, at::optional per_tensor_python) { bool per_tensor = per_tensor_python.has_value() ? per_tensor_python.value() : false; auto float_options = tensor_lists[0][0].options().dtype(at::kFloat); auto output = at::zeros({320}, float_options); at::Tensor output_per_tensor; at::Tensor ret_per_tensor; int ntensors = tensor_lists[0].size(); int max_chunks_per_tensor = -1; if(per_tensor) { for(int t = 0; t < ntensors; t++) { int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size; if(max_chunks_this_tensor > max_chunks_per_tensor) max_chunks_per_tensor = max_chunks_this_tensor; } output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options); ret_per_tensor = at::empty({ntensors}, float_options); } else { ret_per_tensor = at::empty({0}, float_options); } DISPATCH_FLOAT_HALF_AND_BFLOAT(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda", multi_tensor_apply<1>( BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, L2NormFunctor(), output.DATA_PTR(), per_tensor ? output_per_tensor.DATA_PTR() : nullptr, per_tensor, max_chunks_per_tensor);) AT_CUDA_CHECK(cudaGetLastError()); // AT_CUDA_CHECK(cudaDeviceSynchronize()); // This involves one more small kernel launches, but will be negligible end to end. // I could get rid of these by hacking the functor + multi tensor harness with persistence // logic, but keeping it simple for now auto ret = at::empty({1}, output.options()); const at::cuda::OptionalCUDAGuard device_guard(device_of(output)); auto stream = at::cuda::getCurrentCUDAStream(); cleanup<<>>( output.DATA_PTR(), per_tensor ? output_per_tensor.DATA_PTR() : nullptr, ret.DATA_PTR(), per_tensor ? ret_per_tensor.DATA_PTR() : nullptr, per_tensor, max_chunks_per_tensor); return std::tuple(ret, ret_per_tensor); } std::tuple multi_tensor_unscale_l2norm_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, at::Tensor inv_scale, at::optional per_tensor_python) { bool per_tensor = per_tensor_python.has_value() ? per_tensor_python.value() : false; auto float_options = tensor_lists[0][0].options().dtype(at::kFloat); auto output = at::zeros({320}, float_options); at::Tensor output_per_tensor; at::Tensor ret_per_tensor; int ntensors = tensor_lists[0].size(); int max_chunks_per_tensor = -1; if(per_tensor) { for(int t = 0; t < ntensors; t++) { int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size; if(max_chunks_this_tensor > max_chunks_per_tensor) max_chunks_per_tensor = max_chunks_this_tensor; } output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options); ret_per_tensor = at::empty({ntensors}, float_options); } else { ret_per_tensor = at::empty({0}, float_options); } DISPATCH_FLOAT_HALF_AND_BFLOAT(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_unscale_l2norm_cuda", multi_tensor_apply<1>( BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, UnscaleL2NormFunctor(), inv_scale.DATA_PTR(), output.DATA_PTR(), per_tensor ? output_per_tensor.DATA_PTR() : nullptr, per_tensor, max_chunks_per_tensor);) AT_CUDA_CHECK(cudaGetLastError()); // AT_CUDA_CHECK(cudaDeviceSynchronize()); // This involves one more small kernel launches, but will be negligible end to end. // I could get rid of these by hacking the functor + multi tensor harness with persistence // logic, but keeping it simple for now auto ret = at::empty({1}, output.options()); const at::cuda::OptionalCUDAGuard device_guard(device_of(output)); auto stream = at::cuda::getCurrentCUDAStream(); cleanup<<>>( output.DATA_PTR(), per_tensor ? output_per_tensor.DATA_PTR() : nullptr, ret.DATA_PTR(), per_tensor ? ret_per_tensor.DATA_PTR() : nullptr, per_tensor, max_chunks_per_tensor); return std::tuple(ret, ret_per_tensor); } // Compute and update grad norm // Here use a per tensor norm, and blend new norm(n) and old norm(gn) by // L-2: gn = sqrt(a * gn^2 + b * n^2) // L-inf: gn = a * gn + b * n void multi_tensor_norm_out_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, at::Tensor out, const float alpha, const float beta, const int norm_type) { auto float_options = tensor_lists[0][0].options().dtype(at::kFloat); TORCH_CHECK(tensor_lists[0][0].device() == noop_flag.device(), "noop flag should be on the same device as tensors"); // we don't need global thus uses empty here auto output = at::empty({320}, float_options); at::Tensor output_per_tensor; at::Tensor ret_per_tensor; int ntensors = tensor_lists[0].size(); int max_chunks_per_tensor = -1; for(int t = 0; t < ntensors; t++) { int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size; if(max_chunks_this_tensor > max_chunks_per_tensor) max_chunks_per_tensor = max_chunks_this_tensor; } // Although it is single write then read, still need to be zero // Since tailing element also participate cleanup output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options); if (norm_type == 0) { DISPATCH_FLOAT_AND_HALF( tensor_lists[0][0].scalar_type(), 0, "multi_tensor_maxnorm_cuda", multi_tensor_apply<1>( BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, MaxNormFunctor(), output.DATA_PTR(), output_per_tensor.DATA_PTR(), true, max_chunks_per_tensor);) } else { DISPATCH_FLOAT_HALF_AND_BFLOAT( tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda", multi_tensor_apply<1>( BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, L2NormFunctor(), output.DATA_PTR(), output_per_tensor.DATA_PTR(), true, max_chunks_per_tensor);) } AT_CUDA_CHECK(cudaGetLastError()); // AT_CUDA_CHECK(cudaDeviceSynchronize()); // This involves one more small kernel launches, but will be negligible end to end. // I could get rid of these by hacking the functor + multi tensor harness with persistence // logic, but keeping it simple for now auto ret = at::empty({1}, output.options()); // Adding the following device guard since it happens sometimes that the // tensors are on one device and the cuda stream is on another device which // results in ILLEGAL MEM ACCESS error. const at::cuda::OptionalCUDAGuard device_guard(device_of(output)); auto stream = at::cuda::getCurrentCUDAStream(); cleanup_v2<<>>( output.DATA_PTR(), output_per_tensor.DATA_PTR(), ret.DATA_PTR(), out.DATA_PTR(), true, max_chunks_per_tensor, norm_type, alpha, beta); return ; }