# -------------------------------------------------------- # Swin Transformer MoE # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ import numpy as np try: from tutel import moe as tutel_moe except: tutel_moe = None print("Tutel has not been installed. To use Swin-MoE, please install Tutel; otherwise, just ignore this.") class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., mlp_fc2_bias=True): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features, bias=mlp_fc2_bias) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class MoEMlp(nn.Module): def __init__(self, in_features, hidden_features, num_local_experts, top_value, capacity_factor=1.25, cosine_router=False, normalize_gate=False, use_bpr=True, is_gshard_loss=True, gate_noise=1.0, cosine_router_dim=256, cosine_router_init_t=0.5, moe_drop=0.0, init_std=0.02, mlp_fc2_bias=True): super().__init__() self.in_features = in_features self.hidden_features = hidden_features self.num_local_experts = num_local_experts self.top_value = top_value self.capacity_factor = capacity_factor self.cosine_router = cosine_router self.normalize_gate = normalize_gate self.use_bpr = use_bpr self.init_std = init_std self.mlp_fc2_bias = mlp_fc2_bias self.dist_rank = dist.get_rank() self._dropout = nn.Dropout(p=moe_drop) _gate_type = {'type': 'cosine_top' if cosine_router else 'top', 'k': top_value, 'capacity_factor': capacity_factor, 'gate_noise': gate_noise, 'fp32_gate': True} if cosine_router: _gate_type['proj_dim'] = cosine_router_dim _gate_type['init_t'] = cosine_router_init_t self._moe_layer = tutel_moe.moe_layer( gate_type=_gate_type, model_dim=in_features, experts={'type': 'ffn', 'count_per_node': num_local_experts, 'hidden_size_per_expert': hidden_features, 'activation_fn': lambda x: self._dropout(F.gelu(x))}, scan_expert_func=lambda name, param: setattr(param, 'skip_allreduce', True), seeds=(1, self.dist_rank + 1, self.dist_rank + 1), batch_prioritized_routing=use_bpr, normalize_gate=normalize_gate, is_gshard_loss=is_gshard_loss, ) if not self.mlp_fc2_bias: self._moe_layer.experts.batched_fc2_bias.requires_grad = False def forward(self, x): x = self._moe_layer(x) return x, x.l_aux def extra_repr(self) -> str: return f'[Statistics-{self.dist_rank}] param count for MoE, ' \ f'in_features = {self.in_features}, hidden_features = {self.hidden_features}, ' \ f'num_local_experts = {self.num_local_experts}, top_value = {self.top_value}, ' \ f'cosine_router={self.cosine_router} normalize_gate={self.normalize_gate}, use_bpr = {self.use_bpr}' def _init_weights(self): if hasattr(self._moe_layer, "experts"): trunc_normal_(self._moe_layer.experts.batched_fc1_w, std=self.init_std) trunc_normal_(self._moe_layer.experts.batched_fc2_w, std=self.init_std) nn.init.constant_(self._moe_layer.experts.batched_fc1_bias, 0) nn.init.constant_(self._moe_layer.experts.batched_fc2_bias, 0) def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 pretrained_window_size (tuple[int]): The height and width of the window in pre-training. """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0., pretrained_window_size=[0, 0]): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # mlp to generate continuous relative position bias self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False)) # get relative_coords_table relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) relative_coords_table = torch.stack( torch.meshgrid([relative_coords_h, relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2 if pretrained_window_size[0] > 0: relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) else: relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = torch.sign(relative_coords_table) * torch.log2( torch.abs(relative_coords_table) + 1.0) / np.log2(8) self.register_buffer("relative_coords_table", relative_coords_table) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, window_size={self.window_size}, ' \ f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}' def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm mlp_fc2_bias (bool): Whether to add bias in fc2 of Mlp. Default: True init_std: Initialization std. Default: 0.02 pretrained_window_size (int): Window size in pre-training. is_moe (bool): If True, this block is a MoE block. num_local_experts (int): number of local experts in each device (GPU). Default: 1 top_value (int): the value of k in top-k gating. Default: 1 capacity_factor (float): the capacity factor in MoE. Default: 1.25 cosine_router (bool): Whether to use cosine router. Default: False normalize_gate (bool): Whether to normalize the gating score in top-k gating. Default: False use_bpr (bool): Whether to use batch-prioritized-routing. Default: True is_gshard_loss (bool): If True, use Gshard balance loss. If False, use the load loss and importance loss in "arXiv:1701.06538". Default: False gate_noise (float): the noise ratio in top-k gating. Default: 1.0 cosine_router_dim (int): Projection dimension in cosine router. cosine_router_init_t (float): Initialization temperature in cosine router. moe_drop (float): Dropout rate in MoE. Default: 0.0 """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, mlp_fc2_bias=True, init_std=0.02, pretrained_window_size=0, is_moe=False, num_local_experts=1, top_value=1, capacity_factor=1.25, cosine_router=False, normalize_gate=False, use_bpr=True, is_gshard_loss=True, gate_noise=1.0, cosine_router_dim=256, cosine_router_init_t=0.5, moe_drop=0.0): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio self.is_moe = is_moe self.capacity_factor = capacity_factor self.top_value = top_value if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, pretrained_window_size=to_2tuple(pretrained_window_size)) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if self.is_moe: self.mlp = MoEMlp(in_features=dim, hidden_features=mlp_hidden_dim, num_local_experts=num_local_experts, top_value=top_value, capacity_factor=capacity_factor, cosine_router=cosine_router, normalize_gate=normalize_gate, use_bpr=use_bpr, is_gshard_loss=is_gshard_loss, gate_noise=gate_noise, cosine_router_dim=cosine_router_dim, cosine_router_init_t=cosine_router_init_t, moe_drop=moe_drop, mlp_fc2_bias=mlp_fc2_bias, init_std=init_std) else: self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, mlp_fc2_bias=mlp_fc2_bias) if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) x = shortcut + self.drop_path(x) # FFN shortcut = x x = self.norm2(x) if self.is_moe: x, l_aux = self.mlp(x) x = shortcut + self.drop_path(x) return x, l_aux else: x = shortcut + self.drop_path(self.mlp(x)) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp if self.is_moe: flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio * self.capacity_factor * self.top_value else: flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None mlp_fc2_bias (bool): Whether to add bias in fc2 of Mlp. Default: True init_std: Initialization std. Default: 0.02 use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. pretrained_window_size (int): Local window size in pre-training. moe_blocks (tuple(int)): The index of each MoE block. num_local_experts (int): number of local experts in each device (GPU). Default: 1 top_value (int): the value of k in top-k gating. Default: 1 capacity_factor (float): the capacity factor in MoE. Default: 1.25 cosine_router (bool): Whether to use cosine router Default: False normalize_gate (bool): Whether to normalize the gating score in top-k gating. Default: False use_bpr (bool): Whether to use batch-prioritized-routing. Default: True is_gshard_loss (bool): If True, use Gshard balance loss. If False, use the load loss and importance loss in "arXiv:1701.06538". Default: False gate_noise (float): the noise ratio in top-k gating. Default: 1.0 cosine_router_dim (int): Projection dimension in cosine router. cosine_router_init_t (float): Initialization temperature in cosine router. moe_drop (float): Dropout rate in MoE. Default: 0.0 """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, mlp_fc2_bias=True, init_std=0.02, use_checkpoint=False, pretrained_window_size=0, moe_block=[-1], num_local_experts=1, top_value=1, capacity_factor=1.25, cosine_router=False, normalize_gate=False, use_bpr=True, is_gshard_loss=True, cosine_router_dim=256, cosine_router_init_t=0.5, gate_noise=1.0, moe_drop=0.0): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, mlp_fc2_bias=mlp_fc2_bias, init_std=init_std, pretrained_window_size=pretrained_window_size, is_moe=True if i in moe_block else False, num_local_experts=num_local_experts, top_value=top_value, capacity_factor=capacity_factor, cosine_router=cosine_router, normalize_gate=normalize_gate, use_bpr=use_bpr, is_gshard_loss=is_gshard_loss, gate_noise=gate_noise, cosine_router_dim=cosine_router_dim, cosine_router_init_t=cosine_router_init_t, moe_drop=moe_drop) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): l_aux = 0.0 for blk in self.blocks: if self.use_checkpoint: out = checkpoint.checkpoint(blk, x) else: out = blk(x) if isinstance(out, tuple): x = out[0] cur_l_aux = out[1] l_aux = cur_l_aux + l_aux else: x = out if self.downsample is not None: x = self.downsample(x) return x, l_aux def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinTransformerMoE(nn.Module): r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True mlp_fc2_bias (bool): Whether to add bias in fc2 of Mlp. Default: True init_std: Initialization std. Default: 0.02 use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False pretrained_window_sizes (tuple(int)): Pretrained window sizes of each layer. moe_blocks (tuple(tuple(int))): The index of each MoE block in each layer. num_local_experts (int): number of local experts in each device (GPU). Default: 1 top_value (int): the value of k in top-k gating. Default: 1 capacity_factor (float): the capacity factor in MoE. Default: 1.25 cosine_router (bool): Whether to use cosine router Default: False normalize_gate (bool): Whether to normalize the gating score in top-k gating. Default: False use_bpr (bool): Whether to use batch-prioritized-routing. Default: True is_gshard_loss (bool): If True, use Gshard balance loss. If False, use the load loss and importance loss in "arXiv:1701.06538". Default: False gate_noise (float): the noise ratio in top-k gating. Default: 1.0 cosine_router_dim (int): Projection dimension in cosine router. cosine_router_init_t (float): Initialization temperature in cosine router. moe_drop (float): Dropout rate in MoE. Default: 0.0 aux_loss_weight (float): auxiliary loss weight. Default: 0.1 """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, mlp_fc2_bias=True, init_std=0.02, use_checkpoint=False, pretrained_window_sizes=[0, 0, 0, 0], moe_blocks=[[-1], [-1], [-1], [-1]], num_local_experts=1, top_value=1, capacity_factor=1.25, cosine_router=False, normalize_gate=False, use_bpr=True, is_gshard_loss=True, gate_noise=1.0, cosine_router_dim=256, cosine_router_init_t=0.5, moe_drop=0.0, aux_loss_weight=0.01, **kwargs): super().__init__() self._ddp_params_and_buffers_to_ignore = list() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio self.init_std = init_std self.aux_loss_weight = aux_loss_weight self.num_local_experts = num_local_experts self.global_experts = num_local_experts * dist.get_world_size() if num_local_experts > 0 \ else dist.get_world_size() // (-num_local_experts) self.sharded_count = (1.0 / num_local_experts) if num_local_experts > 0 else (-num_local_experts) # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=self.init_std) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, mlp_fc2_bias=mlp_fc2_bias, init_std=init_std, use_checkpoint=use_checkpoint, pretrained_window_size=pretrained_window_sizes[i_layer], moe_block=moe_blocks[i_layer], num_local_experts=num_local_experts, top_value=top_value, capacity_factor=capacity_factor, cosine_router=cosine_router, normalize_gate=normalize_gate, use_bpr=use_bpr, is_gshard_loss=is_gshard_loss, gate_noise=gate_noise, cosine_router_dim=cosine_router_dim, cosine_router_init_t=cosine_router_init_t, moe_drop=moe_drop) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=self.init_std) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, MoEMlp): m._init_weights() @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {"cpb_mlp", 'relative_position_bias_table', 'fc1_bias', 'fc2_bias', 'temperature', 'cosine_projector', 'sim_matrix'} def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) l_aux = 0.0 for layer in self.layers: x, cur_l_aux = layer(x) l_aux = cur_l_aux + l_aux x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x, l_aux def forward(self, x): x, l_aux = self.forward_features(x) x = self.head(x) return x, l_aux * self.aux_loss_weight def add_param_to_skip_allreduce(self, param_name): self._ddp_params_and_buffers_to_ignore.append(param_name) def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops