# -------------------------------------------------------- # SimMIM # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Zhenda Xie # -------------------------------------------------------- import os import torch.distributed as dist from torch.utils.data import DataLoader, DistributedSampler from torchvision import datasets, transforms from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import Mixup from timm.data import create_transform from timm.data.transforms import _pil_interp def build_loader_finetune(config): config.defrost() dataset_train, config.MODEL.NUM_CLASSES = build_dataset(is_train=True, config=config) config.freeze() dataset_val, _ = build_dataset(is_train=False, config=config) num_tasks = dist.get_world_size() global_rank = dist.get_rank() sampler_train = DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) sampler_val = DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False ) data_loader_train = DataLoader( dataset_train, sampler=sampler_train, batch_size=config.DATA.BATCH_SIZE, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=True, ) data_loader_val = DataLoader( dataset_val, sampler=sampler_val, batch_size=config.DATA.BATCH_SIZE, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=False, ) # setup mixup / cutmix mixup_fn = None mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None if mixup_active: mixup_fn = Mixup( mixup_alpha=config.AUG.MIXUP, cutmix_alpha=config.AUG.CUTMIX, cutmix_minmax=config.AUG.CUTMIX_MINMAX, prob=config.AUG.MIXUP_PROB, switch_prob=config.AUG.MIXUP_SWITCH_PROB, mode=config.AUG.MIXUP_MODE, label_smoothing=config.MODEL.LABEL_SMOOTHING, num_classes=config.MODEL.NUM_CLASSES) return dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn def build_dataset(is_train, config): transform = build_transform(is_train, config) if config.DATA.DATASET == 'imagenet': prefix = 'train' if is_train else 'val' root = os.path.join(config.DATA.DATA_PATH, prefix) dataset = datasets.ImageFolder(root, transform=transform) nb_classes = 1000 else: raise NotImplementedError("We only support ImageNet Now.") return dataset, nb_classes def build_transform(is_train, config): resize_im = config.DATA.IMG_SIZE > 32 if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=config.DATA.IMG_SIZE, is_training=True, color_jitter=config.AUG.COLOR_JITTER if config.AUG.COLOR_JITTER > 0 else None, auto_augment=config.AUG.AUTO_AUGMENT if config.AUG.AUTO_AUGMENT != 'none' else None, re_prob=config.AUG.REPROB, re_mode=config.AUG.REMODE, re_count=config.AUG.RECOUNT, interpolation=config.DATA.INTERPOLATION, ) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop(config.DATA.IMG_SIZE, padding=4) return transform t = [] if resize_im: if config.TEST.CROP: size = int((256 / 224) * config.DATA.IMG_SIZE) t.append( transforms.Resize(size, interpolation=_pil_interp(config.DATA.INTERPOLATION)), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(config.DATA.IMG_SIZE)) else: t.append( transforms.Resize((config.DATA.IMG_SIZE, config.DATA.IMG_SIZE), interpolation=_pil_interp(config.DATA.INTERPOLATION)) ) t.append(transforms.ToTensor()) t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)) return transforms.Compose(t)