import unittest import functools as ft import itertools as it from apex import amp import torch from torch import nn import torch.nn.functional as F from utils import common_init, HALF, FLOAT,\ ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT def run_layer_test(test_case, fns, expected, input_shape, test_backward=True): for fn, typ in it.product(fns, expected.keys()): x = torch.randn(input_shape, dtype=typ).requires_grad_() y = fn(x) test_case.assertEqual(y.type(), expected[typ]) if test_backward: y.float().sum().backward() test_case.assertEqual(x.grad.type(), MATCH_INPUT[typ]) class TestBasicCasts(unittest.TestCase): def setUp(self): self.handle = amp.init(enabled=True) common_init(self) def tearDown(self): self.handle._deactivate() def test_linear_is_half(self): m = nn.Linear(self.h, self.h) f = ft.partial(F.linear, weight=m.weight, bias=m.bias) run_layer_test(self, [m, f], ALWAYS_HALF, (self.b, self.h)) def test_conv2d_is_half(self): m = nn.Conv2d(self.c, self.c, self.k) f = ft.partial(F.conv2d, weight=m.weight, bias=m.bias) run_layer_test(self, [m, f], ALWAYS_HALF, (self.b, self.c, self.h, self.h)) def test_softmax_is_float(self): m = nn.Softmax(dim=1) f = ft.partial(F.softmax, dim=1) run_layer_test(self, [m, f], ALWAYS_FLOAT, (self.b, self.h)) def test_group_norm_is_float(self): m = nn.GroupNorm(num_groups=4, num_channels=self.c) run_layer_test(self, [m], ALWAYS_FLOAT, (self.b, self.c, self.h, self.h)) def test_mse_loss_is_float(self): shape = (self.b, self.h) target = torch.randn(shape) mod = nn.MSELoss() m = lambda x: mod(x, target) f = ft.partial(F.mse_loss, target=target) run_layer_test(self, [m], ALWAYS_FLOAT, shape) def test_relu_is_match(self): run_layer_test(self, [nn.ReLU(), F.relu], MATCH_INPUT, (self.b, self.h)) def test_batch_norm_is_match(self): m = nn.BatchNorm2d(num_features=self.c) f = ft.partial(F.batch_norm, running_mean=m.running_mean, running_var=m.running_var, weight=m.weight, bias=m.bias, training=True) run_layer_test(self, [m], MATCH_INPUT, (self.b, self.c, self.h, self.h)) # Test forward-only for BN inference m.eval() f = ft.partial(F.batch_norm, running_mean=m.running_mean, running_var=m.running_var, weight=m.weight, bias=m.bias, training=False) run_layer_test(self, [m, f], MATCH_INPUT, (self.b, self.c, self.h, self.h), test_backward=False) class TestBannedMethods(unittest.TestCase): def setUp(self): self.handle = amp.init(enabled=True) common_init(self) def tearDown(self): self.handle._deactivate() def bce_common(self, assertion): shape = (self.b, self.h) target = torch.rand(shape) mod = nn.BCELoss() m = lambda x: mod(x, target) f = ft.partial(F.binary_cross_entropy, target=target) for fn in [m, f]: x = torch.rand(shape, dtype=torch.half) assertion(fn, x) def test_bce_raises_by_default(self): assertion = lambda fn, x: self.assertRaises(NotImplementedError, fn, x) self.bce_common(assertion) def test_bce_is_float_with_allow_banned(self): self.handle._deactivate() self.handle = amp.init(enabled=True, allow_banned=True) assertion = lambda fn, x: self.assertEqual(fn(x).type(), FLOAT) self.bce_common(assertion) class TestTensorCasts(unittest.TestCase): def setUp(self): self.handle = amp.init(enabled=True) common_init(self) def tearDown(self): self.handle._deactivate() def test_matmul_method_is_half(self): other = torch.randn(self.h, self.h) lhs = lambda x: x.matmul(other) rhs = lambda x: other.matmul(x) run_layer_test(self, [lhs, rhs], ALWAYS_HALF, (self.h, self.h)) def test_matmul_op_is_half(self): other = torch.randn(self.h, self.h) lhs = lambda x: x @ other rhs = lambda x: other @ x run_layer_test(self, [lhs, rhs], ALWAYS_HALF, (self.h, self.h)) def test_pow_method_is_float(self): fn = lambda x: x.pow(2.) run_layer_test(self, [fn], ALWAYS_FLOAT, (self.b, self.h)) def test_pow_op_is_float(self): fn = lambda x: x ** 2. run_layer_test(self, [fn], ALWAYS_FLOAT, (self.b, self.h)) def test_cpu_is_float(self): fn = lambda x: x.cpu() always_cpu_float = {torch.float: 'torch.FloatTensor', torch.half: 'torch.FloatTensor'} run_layer_test(self, [fn], always_cpu_float, (self.b, self.h)) def test_sum_is_float(self): fn = lambda x: x.sum() run_layer_test(self, [fn], ALWAYS_FLOAT, (self.b, self.h)) # TODO: maybe more tests on disabled casting? if __name__ == '__main__': unittest.main()