#include #include #include #include // Another possibility: // #include #include #include "type_shim.h" #include "multi_tensor_apply.cuh" #define BLOCK_SIZE 512 #define ILP 4 typedef enum{ MOMENT_MODE_0 =0, // Novograd paper mode, momentum caculation with denom then decay inside MOMENT_MODE_1 =1 // Decoupled weight decay mode } momentMode_t; void multi_tensor_norm_out_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, at::Tensor out, const float alpha, const float beta, const int norm_type); using MATH_T = float; template struct NovoGradFunctor { __device__ __forceinline__ void operator()( int chunk_size, volatile int* noop_gmem, TensorListMetadata<3>& tl, const float beta1, const float beta2, const float beta3, const float beta1_correction, const float beta2_correction, const float epsilon, const float lr, momentMode_t m_mode, const float decay, const float* per_tensor_grad_norm) { // I'd like this kernel to propagate infs/nans. // if(*noop_gmem == 1) // return; int tensor_loc = tl.block_to_tensor[blockIdx.x]; int tensor_num = tl.start_tensor_this_launch + tensor_loc; int chunk_idx = tl.block_to_chunk[blockIdx.x]; int n = tl.sizes[tensor_loc]; float grad_norm = per_tensor_grad_norm[tensor_num]; T* g = (T*)tl.addresses[0][tensor_loc]; g += chunk_idx*chunk_size; T* p = (T*)tl.addresses[1][tensor_loc]; p += chunk_idx*chunk_size; T* m = (T*)tl.addresses[2][tensor_loc]; m += chunk_idx*chunk_size; n -= chunk_idx*chunk_size; // see note in multi_tensor_scale_kernel.cu for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP) { MATH_T r_g[ILP]; MATH_T r_p[ILP]; MATH_T r_m[ILP]; #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) { r_g[ii] = g[i]; r_p[ii] = p[i]; r_m[ii] = m[i]; } else { r_g[ii] = MATH_T(0); r_p[ii] = MATH_T(0); r_m[ii] = MATH_T(0); } } #pragma unroll for(int ii = 0; ii < ILP; ii++) { if (m_mode == MOMENT_MODE_0) { MATH_T next_v_unbiased = grad_norm / beta2_correction; MATH_T denom = next_v_unbiased + epsilon; r_g[ii] = (r_g[ii] / denom) + (decay * r_p[ii]); r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii]; MATH_T next_m_unbiased = r_m[ii] / beta1_correction; r_p[ii] = r_p[ii] - (lr * next_m_unbiased); } else { r_m[ii] = beta1 * r_m[ii] + beta3 * r_g[ii]; MATH_T next_m_unbiased = r_m[ii] / beta1_correction; MATH_T next_v_unbiased = grad_norm / beta2_correction; MATH_T denom = next_v_unbiased + epsilon; MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]); r_p[ii] = r_p[ii] - (lr * update); } } #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) { p[i] = r_p[ii]; m[i] = r_m[ii]; } } } } }; void multi_tensor_novograd_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, at::Tensor grad_norms, const float lr, const float beta1, const float beta2, const float epsilon, const int step, const int bias_correction, const float weight_decay, const int grad_averaging, const int moment_mode, const int norm_type) { using namespace at; // Handle bias correction mode float bias_correction1 = 1.0f, bias_correction2 = 1.0f; if (bias_correction == 1) { bias_correction1 = 1 - std::pow(beta1, step); bias_correction2 = std::sqrt(1 - std::pow(beta2, step)); } // Handle grad averaging mode float beta3 = 1; if (grad_averaging == 1) beta3 = 1 - beta1; std::vector> grad_list(tensor_lists.begin(), tensor_lists.begin()+1); // Compute and update grad norm // Here use a per tensor norm, and blend new norm(n) and old norm(gn) by // L-2: gn = sqrt(a * gn^2 + b * n^2) // L-inf: gn = a * gn + b * n multi_tensor_norm_out_cuda(chunk_size, noop_flag, grad_list, grad_norms, beta2, (1.0f - beta2), norm_type); // Assume single type across p,g,m1,m2 now DISPATCH_DOUBLE_FLOAT_AND_HALF( tensor_lists[0][0].scalar_type(), 0, "novograd", multi_tensor_apply<3>( BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, NovoGradFunctor(), beta1, beta2, beta3, // 1-beta1 or 1 depends on averaging mode bias_correction1, bias_correction2, epsilon, lr, (momentMode_t) moment_mode, weight_decay, grad_norms.DATA_PTR()); ) AT_CUDA_CHECK(cudaGetLastError()); }