#include "ATen/ATen.h" #include "ATen/AccumulateType.h" #include "ATen/cuda/CUDAContext.h" #include "ATen/cuda/DeviceUtils.cuh" #include #include #include "type_shim.h" #include "static_switch.h" template __device__ void cuWelfordOnlineSum( const U curr, U& mu, U& sigma2, U& count) { count = count + U(1); U delta = curr - mu; U lmean = mu + delta / count; mu = lmean; U delta2 = curr - lmean; sigma2 = sigma2 + delta * delta2; } template __device__ void cuChanOnlineSum( const U muB, const U sigma2B, const U countB, U& mu, U& sigma2, U& count) { U delta = muB - mu; U nA = count; U nB = countB; count = count + countB; U nX = count; if (nX > U(0)) { nA = nA / nX; nB = nB / nX; mu = nA*mu + nB*muB; sigma2 = sigma2 + sigma2B + delta * delta * nA * nB * nX; } else { mu = U(0); sigma2 = U(0); } } template __device__ void cuRMSOnlineSum( const U curr, U& sigma2) { sigma2 = sigma2 + curr * curr; } template __device__ void cuChanRMSOnlineSum( const U sigma2B, U& sigma2) { sigma2 = sigma2 + sigma2B; } template __device__ void cuWelfordMuSigma2( const T* __restrict__ vals, const int n1, const int n2, const int i1, U& mu, U& sigma2, U* buf, bool rms_only) { // Assumptions: // 1) blockDim.x == warpSize // 2) Tensor is contiguous // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available. // // compute variance and mean over n2 U count = U(0); mu= U(0); sigma2 = U(0); if (i1 < n1) { // one warp normalizes one n1 index, // synchronization is implicit // initialize with standard Welford algorithm const int numx = blockDim.x * blockDim.y; const int thrx = threadIdx.x + threadIdx.y * blockDim.x; const T* lvals = vals + i1*n2; int l = 4*thrx; for (; l+3 < n2; l+=4*numx) { for (int k = 0; k < 4; ++k) { U curr = static_cast(lvals[l+k]); if (!rms_only) { cuWelfordOnlineSum(curr,mu,sigma2,count); } else { cuRMSOnlineSum(curr, sigma2); } } } for (; l < n2; ++l) { U curr = static_cast(lvals[l]); if (!rms_only) { cuWelfordOnlineSum(curr,mu,sigma2,count); } else { cuRMSOnlineSum(curr, sigma2); } } // intra-warp reductions for (int l = 0; l <= 4; ++l) { int srcLaneB = (threadIdx.x+(1<(muB,sigma2B,countB,mu,sigma2,count); } else { cuChanRMSOnlineSum(sigma2B, sigma2); } } // threadIdx.x == 0 has correct values for each warp // inter-warp reductions if (blockDim.y > 1) { U* ubuf = (U*)buf; U* ibuf = (U*)(ubuf + blockDim.y); for (int offset = blockDim.y/2; offset > 0; offset /= 2) { // upper half of warps write to shared if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) { const int wrt_y = threadIdx.y - offset; if (!rms_only) { ubuf[2*wrt_y] = mu; ibuf[wrt_y] = count; } ubuf[2*wrt_y+1] = sigma2; } __syncthreads(); // lower half merges if (threadIdx.x == 0 && threadIdx.y < offset) { U sigma2B = ubuf[2*threadIdx.y+1]; if (!rms_only) { U muB = ubuf[2*threadIdx.y]; U countB = ibuf[threadIdx.y]; cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count); } else { cuChanRMSOnlineSum(sigma2B,sigma2); } } __syncthreads(); } // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values if (threadIdx.x == 0 && threadIdx.y == 0) { if (!rms_only) { ubuf[0] = mu; } ubuf[1] = sigma2; } __syncthreads(); if (!rms_only) { mu = ubuf[0]; } sigma2 = ubuf[1]/U(n2); // don't care about final value of count, we know count == n2 } else { if (!rms_only) { mu = WARP_SHFL(mu, 0); } sigma2 = WARP_SHFL(sigma2/U(n2), 0); } } } template<> __device__ void cuWelfordMuSigma2( const at::Half* __restrict__ vals, const int n1, const int n2, const int i1, float& mu, float& sigma2, float* buf, bool rms_only) { // Assumptions: // 1) blockDim.x == warpSize // 2) Tensor is contiguous // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available. // // compute variance and mean over n2 float count = 0.0f; mu= float(0); sigma2 = float(0); if (i1 < n1) { // one warp normalizes one n1 index, // synchronization is implicit // initialize with standard Welford algorithm const int numx = blockDim.x * blockDim.y; const int thrx = threadIdx.x + threadIdx.y * blockDim.x; const at::Half* lvals = vals + i1*n2; int l = 8*thrx; if ((((size_t)lvals)&3) != 0) { // 16 bit alignment // first thread consumes first point if (thrx == 0) { float curr = static_cast(lvals[0]); if (!rms_only) { cuWelfordOnlineSum(curr,mu,sigma2,count); } else { cuRMSOnlineSum(curr, sigma2); } } ++l; } // at this point, lvals[l] are 32 bit aligned for all threads. for (; l+7 < n2; l+=8*numx) { for (int k = 0; k < 8; k+=2) { float2 curr = __half22float2(*((__half2*)(lvals+l+k))); if (!rms_only) { cuWelfordOnlineSum(curr.x,mu,sigma2,count); cuWelfordOnlineSum(curr.y,mu,sigma2,count); } else { cuRMSOnlineSum(curr.x, sigma2); cuRMSOnlineSum(curr.y, sigma2); } } } for (; l < n2; ++l) { float curr = static_cast(lvals[l]); if (!rms_only) { cuWelfordOnlineSum(curr,mu,sigma2,count); } else { cuRMSOnlineSum(curr, sigma2); } } // intra-warp reductions for (int l = 0; l <= 4; ++l) { int srcLaneB = (threadIdx.x+(1< 1) { float* ubuf = (float*)buf; float* ibuf = (float*)(ubuf + blockDim.y); for (int offset = blockDim.y/2; offset > 0; offset /= 2) { // upper half of warps write to shared if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) { const int wrt_y = threadIdx.y - offset; ubuf[2*wrt_y+1] = sigma2; if (!rms_only) { ubuf[2*wrt_y] = mu; ibuf[wrt_y] = count; } } __syncthreads(); // lower half merges if (threadIdx.x == 0 && threadIdx.y < offset) { float sigma2B = ubuf[2*threadIdx.y+1]; if (!rms_only) { float muB = ubuf[2*threadIdx.y]; float countB = ibuf[threadIdx.y]; cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count); } else { cuChanRMSOnlineSum(sigma2B, sigma2); } } __syncthreads(); } // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values if (threadIdx.x == 0 && threadIdx.y == 0) { if (!rms_only) { ubuf[0] = mu; } ubuf[1] = sigma2; } __syncthreads(); if (!rms_only) { mu = ubuf[0]; } sigma2 = ubuf[1]/float(n2); // don't care about final value of count, we know count == n2 } else { if (!rms_only) { mu = WARP_SHFL(mu, 0); } sigma2 = WARP_SHFL(sigma2/float(n2), 0); } } } template U rsqrt(U v) { return U(1) / sqrt(v); } template<> float rsqrt(float v) { return rsqrtf(v); } template<> double rsqrt(double v) { return rsqrt(v); } namespace { // This is the un-specialized struct. Note that we prevent instantiation of this // struct by putting an undefined symbol in the function body so it won't compile. // template // struct SharedMemory // { // // Ensure that we won't compile any un-specialized types // __device__ T *getPointer() // { // extern __device__ void error(void); // error(); // return NULL; // } // }; // https://github.com/NVIDIA/apex/issues/246 template struct SharedMemory; template <> struct SharedMemory { __device__ float *getPointer() { extern __shared__ float s_float[]; return s_float; } }; template <> struct SharedMemory { __device__ double *getPointer() { extern __shared__ double s_double[]; return s_double; } }; } template __device__ void cuApplyLayerNorm_( V* __restrict__ output_vals, U* __restrict__ mean, U* __restrict__ invvar, const T* __restrict__ vals, const int n1, const int n2, const U epsilon, const V* __restrict__ gamma, const V* __restrict__ beta, bool rms_only ) { // Assumptions: // 1) blockDim.x == warpSize // 2) Tensors are contiguous // for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) { SharedMemory shared; U* buf = shared.getPointer(); U mu,sigma2; cuWelfordMuSigma2(vals,n1,n2,i1,mu,sigma2,buf,rms_only); const T* lvals = vals + i1*n2; V* ovals = output_vals + i1*n2; U c_invvar = rsqrt(sigma2 + epsilon); const int numx = blockDim.x * blockDim.y; const int thrx = threadIdx.x + threadIdx.y * blockDim.x; if (gamma != NULL && (beta != NULL || rms_only)) { for (int i = thrx; i < n2; i+=numx) { U curr = static_cast(lvals[i]); if (!rms_only) { ovals[i] = gamma[i] * static_cast(c_invvar * (curr - mu)) + beta[i]; } else { ovals[i] = gamma[i] * static_cast(c_invvar * curr); } } } else { for (int i = thrx; i < n2; i+=numx) { U curr = static_cast(lvals[i]); if (!rms_only) { ovals[i] = static_cast(c_invvar * (curr - mu)); } else { ovals[i] = static_cast(c_invvar * curr); } } } if (threadIdx.x == 0 && threadIdx.y == 0) { if (!rms_only) { mean[i1] = mu; } invvar[i1] = c_invvar; } __syncthreads(); } } template __global__ void cuApplyLayerNorm( V* __restrict__ output_vals, U* __restrict__ mean, U* __restrict__ invvar, const T* __restrict__ vals, const int n1, const int n2, const U epsilon, const V* __restrict__ gamma, const V* __restrict__ beta ) { cuApplyLayerNorm_(output_vals, mean, invvar, vals, n1, n2, epsilon, gamma, beta, false); } template __global__ void cuApplyRMSNorm( V* __restrict__ output_vals, U* __restrict__ invvar, const T* __restrict__ vals, const int n1, const int n2, const U epsilon, const V* __restrict__ gamma) { cuApplyLayerNorm_(output_vals, NULL, invvar, vals, n1, n2, epsilon, gamma, NULL, true); } template __device__ V clamp_by_magnitude(V curr_gamma, double eps) { const V kMinGamma = V(eps); if (curr_gamma >= 0) { if (curr_gamma < kMinGamma) { return kMinGamma; } else { return curr_gamma; } } else { if (curr_gamma > -kMinGamma) { return -kMinGamma; } else { return curr_gamma; } } } template __device__ void cuLoadWriteStridedInputs( const int i1_block, const int thr_load_row_off, const int thr_load_col_off, const int i2_off, const int row_stride, U* warp_buf1, U* warp_buf2, const T* input_or_output, const V* dout, const int i1_end, const int n2, const U* __restrict__ mean, const U* __restrict__ invvar, const V* __restrict__ gamma, const V* __restrict__ beta, const double eps, bool rms_only ) { int i1 = i1_block+thr_load_row_off; if (i1 < i1_end) { for (int k = 0; k < blockDim.y; ++k) { int i2 = i2_off + k; int load_idx = i1*n2+i2; int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k; if (i2(input_or_output[load_idx]); U curr_dout = static_cast(dout[load_idx]); if (!rms_only) { warp_buf1[write_idx] = curr_dout; if (MemoryEfficient) { U curr_beta = static_cast(beta[i2]); warp_buf2[write_idx] = curr_dout * (c_h - curr_beta) / static_cast(clamp_by_magnitude(gamma[i2], eps)); } else { warp_buf2[write_idx] = curr_dout * (c_h - mean[i1]) * invvar[i1]; } } else { if (MemoryEfficient) { warp_buf2[write_idx] = curr_dout * (c_h) / static_cast(clamp_by_magnitude(gamma[i2], eps)); } else { warp_buf2[write_idx] = curr_dout * (c_h) * invvar[i1]; } } } else { if (!rms_only) { warp_buf1[write_idx] = U(0); } warp_buf2[write_idx] = U(0); } } } else { for (int k = 0; k < blockDim.y; ++k) { int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k; if (!rms_only) { warp_buf1[write_idx] = U(0); } warp_buf2[write_idx] = U(0); } } } template __device__ void cuLoadAddStridedInputs( const int i1_block, const int thr_load_row_off, const int thr_load_col_off, const int i2_off, const int row_stride, U* warp_buf1, U* warp_buf2, const T* input_or_output, const V* dout, const int i1_end, const int n2, const U* __restrict__ mean, const U* __restrict__ invvar, const V* __restrict__ gamma, const V* __restrict__ beta, const double eps, bool rms_only ) { int i1 = i1_block+thr_load_row_off; if (i1 < i1_end) { for (int k = 0; k < blockDim.y; ++k) { int i2 = i2_off + k; int load_idx = i1*n2+i2; int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k; if (i2(input_or_output[load_idx]); U curr_dout = static_cast(dout[load_idx]); if (!rms_only) { U curr_beta = static_cast(beta[i2]); warp_buf1[write_idx] += curr_dout; if (MemoryEfficient) { warp_buf2[write_idx] += curr_dout * (c_h - curr_beta) / static_cast(clamp_by_magnitude(gamma[i2], eps)); } else { warp_buf2[write_idx] += curr_dout * (c_h - mean[i1]) * invvar[i1]; } } else { if (MemoryEfficient) { warp_buf2[write_idx] += curr_dout * (c_h) / static_cast(clamp_by_magnitude(gamma[i2], eps)); } else { warp_buf2[write_idx] += curr_dout * (c_h) * invvar[i1]; } } } } } } template __global__ void cuComputePartGradGammaBeta( const V* __restrict__ dout, const T* __restrict__ input_or_output, const int n1, const int n2, const U* __restrict__ mean, const U* __restrict__ invvar, U epsilon, const V* __restrict__ gamma, const V* __restrict__ beta, U* part_grad_gamma, U* part_grad_beta, const double eps, bool rms_only) { const int numsegs_n1 = (n1+blockDim.y*blockDim.y-1) / (blockDim.y*blockDim.y); const int segs_per_block = (numsegs_n1 + gridDim.y - 1) / gridDim.y; const int i1_beg = blockIdx.y * segs_per_block * blockDim.y*blockDim.y; const int i1_beg_plus_one = (blockIdx.y+1) * segs_per_block * blockDim.y*blockDim.y; const int i1_end = i1_beg_plus_one < n1 ? i1_beg_plus_one : n1; const int row_stride = blockDim.x+1; const int thr_load_col_off = (threadIdx.x*blockDim.y)&(blockDim.x-1); const int thr_load_row_off = (threadIdx.x*blockDim.y)/blockDim.x + threadIdx.y*blockDim.y; const int i2_off = blockIdx.x * blockDim.x + thr_load_col_off; SharedMemory shared; U* buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y * blockDim.y + (blockDim.y - 1)*(blockDim.x/blockDim.y) elements U* warp_buf1 = (U*)buf; U* warp_buf2 = warp_buf1 + blockDim.y * blockDim.y * row_stride; // compute partial sums from strided inputs // do this to increase number of loads in flight cuLoadWriteStridedInputs(i1_beg,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input_or_output,dout,i1_end,n2,mean,invvar,gamma,beta,eps, rms_only); for (int i1_block = i1_beg+blockDim.y*blockDim.y; i1_block < i1_end; i1_block+=blockDim.y*blockDim.y) { cuLoadAddStridedInputs(i1_block,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input_or_output,dout,i1_end,n2,mean,invvar,gamma,beta,eps, rms_only); } __syncthreads(); // inter-warp reductions // sum within each warp U acc1 = U(0); U acc2 = U(0); for (int k = 0; k < blockDim.y; ++k) { int row1 = threadIdx.y + k*blockDim.y; int idx1 = row1*row_stride + threadIdx.x; if (!rms_only) { acc1 += warp_buf1[idx1]; } acc2 += warp_buf2[idx1]; } if (!rms_only) { warp_buf1[threadIdx.y*row_stride+threadIdx.x] = acc1; } warp_buf2[threadIdx.y*row_stride+threadIdx.x] = acc2; __syncthreads(); // sum all warps for (int offset = blockDim.y/2; offset > 1; offset /= 2) { if (threadIdx.y < offset) { int row1 = threadIdx.y; int row2 = threadIdx.y + offset; int idx1 = row1*row_stride + threadIdx.x; int idx2 = row2*row_stride + threadIdx.x; if (!rms_only) { warp_buf1[idx1] += warp_buf1[idx2]; } warp_buf2[idx1] += warp_buf2[idx2]; } __syncthreads(); } int i2 = blockIdx.x * blockDim.x + threadIdx.x; if (threadIdx.y == 0 && i2 < n2) { int row1 = threadIdx.y; int row2 = threadIdx.y + 1; int idx1 = row1*row_stride + threadIdx.x; int idx2 = row2*row_stride + threadIdx.x; if (!rms_only) { part_grad_beta[blockIdx.y*n2+i2] = warp_buf1[idx1] + warp_buf1[idx2]; } part_grad_gamma[blockIdx.y*n2+i2] = warp_buf2[idx1] + warp_buf2[idx2]; } } template __global__ void cuComputeGradGammaBeta( const U* part_grad_gamma, const U* part_grad_beta, const int part_size, const int n1, const int n2, V* grad_gamma, V* grad_beta, bool rms_only) { // sum partial gradients for gamma and beta SharedMemory shared; U* buf = shared.getPointer(); int i2 = blockIdx.x * blockDim.x + threadIdx.x; if (i2 < n2) { // each warp does sequential reductions until reduced part_size is num_warps int num_warp_reductions = part_size / blockDim.y; U sum_gamma = U(0); U sum_beta = U(0); const U* part_grad_gamma_ptr = part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2; const U* part_grad_beta_ptr = part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2; for (int warp_offset = 0; warp_offset < num_warp_reductions; ++warp_offset) { sum_gamma += part_grad_gamma_ptr[warp_offset*n2]; if (!rms_only) { sum_beta += part_grad_beta_ptr[warp_offset*n2]; } } // inter-warp reductions const int nbsize3 = blockDim.x * blockDim.y / 2; for (int offset = blockDim.y/2; offset >= 1; offset /= 2) { // top half write to shared memory if (threadIdx.y >= offset && threadIdx.y < 2*offset) { const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x; buf[write_idx] = sum_gamma; if (!rms_only) { buf[write_idx+nbsize3] = sum_beta; } } __syncthreads(); // bottom half sums if (threadIdx.y < offset) { const int read_idx = threadIdx.y * blockDim.x + threadIdx.x; sum_gamma += buf[read_idx]; if (!rms_only) { sum_beta += buf[read_idx+nbsize3]; } } __syncthreads(); } // write out fully summed gradients if (threadIdx.y == 0) { grad_gamma[i2] = sum_gamma; if (!rms_only) { grad_beta[i2] = sum_beta; } } } } template __global__ void cuComputeGradInput( const V* __restrict__ dout, const T* __restrict__ input_or_output, const int n1, const int n2, const U* __restrict__ mean, const U* __restrict__ invvar, U epsilon, const V* gamma, const V* beta, T* grad_input, const double eps, bool rms_only) { for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) { U sum_loss1 = U(0); U sum_loss2 = U(0); const T* k_h = input_or_output + i1*n2; const V* k_dout = dout + i1*n2; const U c_invvar = invvar[i1]; const U c_mean = !MemoryEfficient ? mean[i1] : 0.; const int numx = blockDim.x * blockDim.y; const int thrx = threadIdx.x + threadIdx.y * blockDim.x; if (gamma != NULL) { int l = 4*thrx; for (; l+3 < n2; l+=4*numx) { for (int k = 0; k < 4; ++k) { const U c_h = static_cast(k_h[l+k]); const U c_loss = static_cast(k_dout[l+k]); if (!rms_only) { sum_loss1 += c_loss * gamma[l+k]; if (MemoryEfficient) { sum_loss2 += c_loss * (c_h - beta[l+k]); } else { sum_loss2 += c_loss * gamma[l+k] * (c_h - c_mean) * c_invvar; } } else { if (MemoryEfficient) { sum_loss2 += c_loss * c_h; } else { sum_loss2 += c_loss * gamma[l+k] * (c_h) * c_invvar; } } } } for (; l < n2; ++l) { const U c_h = static_cast(k_h[l]); const U c_loss = static_cast(k_dout[l]); if (!rms_only) { sum_loss1 += c_loss * gamma[l]; if (MemoryEfficient) { sum_loss2 += c_loss * (c_h - beta[l]); } else { sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar; } } else { if (MemoryEfficient) { sum_loss2 += c_loss * c_h; } else { sum_loss2 += c_loss * gamma[l] * (c_h) * c_invvar; } } } } else { int l = 4*thrx; for (; l+3 < n2; l+=4*numx) { for (int k = 0; k < 4; ++k) { const U c_h = static_cast(k_h[l+k]); const U c_loss = static_cast(k_dout[l+k]); if (!rms_only) { sum_loss1 += c_loss; if (MemoryEfficient) { sum_loss2 += c_loss * c_h; } else { sum_loss2 += c_loss * (c_h - c_mean) * c_invvar; } } else { if (MemoryEfficient) { sum_loss2 += c_loss * c_h; } else { sum_loss2 += c_loss * (c_h) * c_invvar; } } } } for (; l < n2; ++l) { const U c_h = static_cast(k_h[l]); const U c_loss = static_cast(k_dout[l]); if (!rms_only) { sum_loss1 += c_loss; if (MemoryEfficient) { sum_loss2 += c_loss * c_h; } else { sum_loss2 += c_loss * (c_h - c_mean) * c_invvar; } } else { if (MemoryEfficient) { sum_loss2 += c_loss * c_h; } else { sum_loss2 += c_loss * (c_h) * c_invvar; } } } } // intra-warp reductions for (int mask = blockDim.x/2; mask > 0; mask /= 2) { if (!rms_only) { sum_loss1 += WARP_SHFL_XOR(sum_loss1, mask); } sum_loss2 += WARP_SHFL_XOR(sum_loss2, mask); } // inter-warp reductions if (blockDim.y > 1) { SharedMemory shared; U* buf = shared.getPointer(); for (int offset = blockDim.y/2; offset > 0; offset /= 2) { // upper half of warps write to shared if (threadIdx.y >= offset && threadIdx.y < 2*offset) { const int wrt_i = (threadIdx.y - offset) * blockDim.x + threadIdx.x; if (!rms_only) { buf[2*wrt_i] = sum_loss1; } buf[2*wrt_i+1] = sum_loss2; } __syncthreads(); // lower half merges if (threadIdx.y < offset) { const int read_i = threadIdx.y * blockDim.x + threadIdx.x; if (!rms_only) { sum_loss1 += buf[2*read_i]; } sum_loss2 += buf[2*read_i+1]; } __syncthreads(); } if (threadIdx.y == 0) { if (!rms_only) { buf[2*threadIdx.x] = sum_loss1; } buf[2*threadIdx.x+1] = sum_loss2; } __syncthreads(); if (threadIdx.y !=0) { if (!rms_only) { sum_loss1 = buf[2*threadIdx.x]; } sum_loss2 = buf[2*threadIdx.x+1]; } } // all threads now have the two sums over l U fH = (U)n2; U term1 = (U(1) / fH) * c_invvar; T* k_grad_input = grad_input + i1*n2; if (gamma != NULL) { for (int l = thrx; l < n2; l+=numx) { const U c_h = static_cast(k_h[l]); const U c_loss = static_cast(k_dout[l]); const U k_gamma = static_cast(clamp_by_magnitude(gamma[l], eps)); U f_grad_input = fH * c_loss * k_gamma; if (!rms_only) { const U k_beta = beta[l]; f_grad_input -= sum_loss1; if (MemoryEfficient) { f_grad_input -= (c_h - k_beta) / k_gamma * sum_loss2; } else { f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2; } } else { if (MemoryEfficient) { f_grad_input -= c_h / k_gamma * sum_loss2; } else { f_grad_input -= c_h * c_invvar * sum_loss2; } } f_grad_input *= term1; k_grad_input[l] = static_cast(f_grad_input); } } else { for (int l = thrx; l < n2; l+=numx) { const U c_h = static_cast(k_h[l]); const U c_loss = static_cast(k_dout[l]); U f_grad_input = fH * c_loss; if (!rms_only) { f_grad_input -= sum_loss1; if (MemoryEfficient) { f_grad_input -= c_h * sum_loss2; } else { f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2; } } else { if (MemoryEfficient) { f_grad_input -= c_h * sum_loss2; } else { f_grad_input -= c_h * c_invvar * sum_loss2; } } f_grad_input *= term1; k_grad_input[l] = static_cast(f_grad_input); } } // prevent race where buf is written again before reads are done __syncthreads(); } } template void HostApplyLayerNorm( V* output, U* mean, U* invvar, const T* input, int n1, int n2, double epsilon, const V* gamma, const V* beta ) { auto stream = at::cuda::getCurrentCUDAStream().stream(); const dim3 threads(32,4,1); const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1]; const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1); int nshared = threads.y > 1 ? threads.y*sizeof(U)+(threads.y/2)*sizeof(U) : 0; cuApplyLayerNorm<<>>( output, mean, invvar, input, n1, n2, U(epsilon), gamma, beta); } template void HostApplyRMSNorm( V* output, U* invvar, const T* input, int n1, int n2, double epsilon, const V* gamma) { auto stream = at::cuda::getCurrentCUDAStream().stream(); const dim3 threads(32,4,1); const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1]; const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1); int nshared = threads.y > 1 ? threads.y*sizeof(U)+(threads.y/2)*sizeof(U) : 0; cuApplyRMSNorm<<>>( output, invvar, input, n1, n2, U(epsilon), gamma); } void cuda_layer_norm( at::Tensor* output, at::Tensor* mean, at::Tensor* invvar, at::Tensor* input, int n1, int n2, #ifdef VERSION_GE_1_1 at::IntArrayRef normalized_shape, #else at::IntList normalized_shape, #endif at::Tensor* gamma, at::Tensor* beta, double epsilon) { using namespace at; DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES( input->scalar_type(), output->scalar_type(), "layer_norm_cuda_kernel", using accscalar_t = at::acc_type; HostApplyLayerNorm( output->DATA_PTR(), mean->DATA_PTR(), invvar->DATA_PTR(), input->DATA_PTR(), n1,n2, epsilon, gamma != NULL ? gamma->DATA_PTR() : NULL, beta != NULL ? beta->DATA_PTR() : NULL); ) } void cuda_rms_norm( at::Tensor* output, at::Tensor* invvar, at::Tensor* input, int n1, int n2, #ifdef VERSION_GE_1_1 at::IntArrayRef normalized_shape, #else at::IntList normalized_shape, #endif at::Tensor* gamma, double epsilon) { using namespace at; DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES( input->scalar_type(), output->scalar_type(), "rms_norm_cuda_kernel", using accscalar_t = at::acc_type; HostApplyRMSNorm( output->DATA_PTR(), invvar->DATA_PTR(), input->DATA_PTR(), n1,n2, epsilon, gamma != NULL ? gamma->DATA_PTR() : NULL); ) } template void HostLayerNormGradient( const V* dout, const U* mean, const U* invvar, at::Tensor* input_or_output, int n1, int n2, const V* gamma, const V* beta, double epsilon, T* grad_input, V* grad_gamma, V* grad_beta, bool memory_efficient ) { auto stream = at::cuda::getCurrentCUDAStream().stream(); if (gamma != NULL && beta != NULL) { // compute grad_gamma(j) and grad_beta(j) const int part_size = 16; const dim3 threads2(32,4,1); const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1); const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1); const int nshared2_b = threads2.x * threads2.y * sizeof(U); const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b; // note (mkozuki): I can hard code part_grad_gamma's dtype as float given that // the `cuda_layer_norm_gradient` doesn't support double. const auto part_grad_dtype = (input_or_output->scalar_type() == at::ScalarType::Half || input_or_output->scalar_type() == at::ScalarType::BFloat16) ? at::ScalarType::Float : input_or_output->scalar_type(); at::Tensor part_grad_gamma = at::empty({part_size,n2}, input_or_output->options().dtype(part_grad_dtype)); at::Tensor part_grad_beta = at::empty_like(part_grad_gamma); BOOL_SWITCH(memory_efficient, MemoryEfficient, [&]{ auto kernel = &cuComputePartGradGammaBeta; kernel<<>>( dout, input_or_output->DATA_PTR(), n1,n2, mean, invvar, U(epsilon), gamma, beta, part_grad_gamma.DATA_PTR(), part_grad_beta.DATA_PTR(), epsilon, false); }); const dim3 threads3(32,8,1); const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1); const int nshared3 = threads3.x * threads3.y * sizeof(U); cuComputeGradGammaBeta<<>>( part_grad_gamma.DATA_PTR(), part_grad_beta.DATA_PTR(), part_size, n1,n2, grad_gamma, grad_beta, false); } // compute grad_input const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1]; const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1); const dim3 threads1(32,4,1); int nshared = threads1.y > 1 ? threads1.y*threads1.x*sizeof(U) : 0; BOOL_SWITCH(memory_efficient, MemoryEfficient, [&] { auto kernel = cuComputeGradInput; kernel<<>>( dout, input_or_output->DATA_PTR(), n1,n2, mean, invvar, U(epsilon), gamma, beta, grad_input, epsilon, false); }); } template void HostRMSNormGradient( const V* dout, const U* invvar, at::Tensor* input_or_output, int n1, int n2, const V* gamma, double epsilon, T* grad_input, V* grad_gamma, bool memory_efficient) { auto stream = at::cuda::getCurrentCUDAStream().stream(); if (gamma != NULL) { const int part_size = 16; const dim3 threads2(32,4,1); const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1); const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1); const int nshared2_b = threads2.x * threads2.y * sizeof(U); const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b; // note (mkozuki): I can hard code part_grad_gamma's dtype as float given that // the `cuda_layer_norm_gradient` doesn't support double. const auto part_grad_dtype = (input_or_output->scalar_type() == at::ScalarType::Half || input_or_output->scalar_type() == at::ScalarType::BFloat16) ? at::ScalarType::Float : input_or_output->scalar_type(); at::Tensor part_grad_gamma = at::empty({part_size,n2}, input_or_output->options().dtype(part_grad_dtype)); BOOL_SWITCH(memory_efficient, MemoryEfficient, [&]{ auto kernel = &cuComputePartGradGammaBeta; kernel<<>>( dout, input_or_output->DATA_PTR(), n1,n2, invvar, /* unused */ invvar, U(epsilon), gamma, gamma, /* unused */ part_grad_gamma.DATA_PTR(), part_grad_gamma.DATA_PTR(), /* unused */ epsilon, true); }); const dim3 threads3(32,8,1); const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1); const int nshared3 = threads3.x * threads3.y * sizeof(U); cuComputeGradGammaBeta<<>>( part_grad_gamma.DATA_PTR(), part_grad_gamma.DATA_PTR(), /* unused */ part_size, n1,n2, grad_gamma, grad_gamma, /* unused */ true); } // compute grad_input const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1]; const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1); const dim3 threads1(32,4,1); int nshared = threads1.y > 1 ? threads1.y*threads1.x*sizeof(U) : 0; BOOL_SWITCH(memory_efficient, MemoryEfficient, [&] { auto kernel = cuComputeGradInput; kernel<<>>( dout, input_or_output->DATA_PTR(), n1,n2, invvar, /* unused */ invvar, U(epsilon), gamma, gamma, /* unused */ grad_input, epsilon, true); }); } void cuda_layer_norm_gradient( at::Tensor* dout, at::Tensor* mean, at::Tensor* invvar, at::Tensor* input_or_output, int n1, int n2, #ifdef VERSION_GE_1_1 at::IntArrayRef normalized_shape, #else at::IntList normalized_shape, #endif at::Tensor* gamma, at::Tensor* beta, double epsilon, at::Tensor* grad_input, at::Tensor* grad_gamma, at::Tensor* grad_beta, bool memory_efficient) { using namespace at; // we can do away with `accscalar_t` as there're only three dtypes: fp32, fp16, bf16 DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES( input_or_output->scalar_type(), gamma == NULL ? input_or_output->scalar_type() : gamma->scalar_type(), "cuComputeGradInput", using accscalar_t = at::acc_type; HostLayerNormGradient( dout->DATA_PTR(), mean != NULL ? mean->DATA_PTR() : NULL, invvar->DATA_PTR(), input_or_output, n1,n2, // TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta // if gamma Tensor is NULL on input. gamma != NULL ? gamma->DATA_PTR() : NULL, gamma != NULL ? beta->DATA_PTR() : NULL, epsilon, grad_input->DATA_PTR(), gamma != NULL ? grad_gamma->DATA_PTR() : NULL, gamma != NULL ? grad_beta->DATA_PTR() : NULL, memory_efficient); ) } void cuda_rms_norm_gradient( at::Tensor* dout, at::Tensor* invvar, at::Tensor* input_or_output, int n1, int n2, #ifdef VERSION_GE_1_1 at::IntArrayRef normalized_shape, #else at::IntList normalized_shape, #endif at::Tensor* gamma, double epsilon, at::Tensor* grad_input, at::Tensor* grad_gamma, bool memory_efficient) { using namespace at; // we can do away with `accscalar_t` as there're only three dtypes: fp32, fp16, bf16 // DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES( DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES( input_or_output->scalar_type(), gamma == NULL ? input_or_output->scalar_type() : gamma->scalar_type(), "cuComputeGradInputRMS", using accscalar_t = at::acc_type; HostRMSNormGradient( dout->DATA_PTR(), invvar->DATA_PTR(), input_or_output, n1,n2, // TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta // if gamma Tensor is NULL on input. gamma != NULL ? gamma->DATA_PTR() : NULL, epsilon, grad_input->DATA_PTR(), gamma != NULL ? grad_gamma->DATA_PTR() : NULL, memory_efficient); ) }