# Following properties are mandatory when engine files are not specified: # int8-calib-file(Only in INT8), model-file-format # Caffemodel mandatory properties: model-file, proto-file, output-blob-names # UFF: uff-file, input-dims, uff-input-blob-name, output-blob-names # ONNX: onnx-file # # Mandatory properties for detectors: # num-detected-classes # # Optional properties for detectors: # cluster-mode(Default=Group Rectangles), interval(Primary mode only, Default=0) # custom-lib-path # parse-bbox-func-name # # Mandatory properties for classifiers: # classifier-threshold, is-classifier # # Optional properties for classifiers: # classifier-async-mode(Secondary mode only, Default=false) # # Optional properties in secondary mode: # operate-on-gie-id(Default=0), operate-on-class-ids(Defaults to all classes), # input-object-min-width, input-object-min-height, input-object-max-width, # input-object-max-height # # Following properties are always recommended: # batch-size(Default=1) # # Other optional properties: # net-scale-factor(Default=1), network-mode(Default=0 i.e FP32), # model-color-format(Default=0 i.e. RGB) model-engine-file, labelfile-path, # mean-file, gie-unique-id(Default=0), offsets, process-mode (Default=1 i.e. primary), # custom-lib-path, network-mode(Default=0 i.e FP32) # # The values in the config file are overridden by values set through GObject # properties. [property] gpu-id=0 net-scale-factor=0.0039215697906911373 #0=RGB, 1=BGR model-color-format=0 # custom-network-config=yolov3-tiny.cfg # model-file=yolov3-tiny.weights model-engine-file=../data/FP16/yolov5m.engine labelfile-path=labels.txt process-mode=1 batch-size=12 ## 0=FP32, 1=INT8, 2=FP16 mode network-mode=1 num-detected-classes=80 gie-unique-id=1 network-type=0 #is-classifier=0 output-blob-names=prob ## 0=Group Rectangles, 1=DBSCAN, 2=NMS, 3= DBSCAN+NMS Hybrid, 4 = None(No clustering) cluster-mode=2 interval=0 maintain-aspect-ratio=1 parse-bbox-func-name=NvDsInferParseCustomYoloV5 custom-lib-path=../lib/libnvdsinfer_custom_impl_Yolo.so engine-create-func-name=NvDsInferYoloCudaEngineGet #scaling-filter=0 #scaling-compute-hw=0 [class-attrs-all] nms-iou-threshold=0.5 pre-cluster-threshold=0.4