123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- /*************************************************************************
- * Copyright (C) [2021] by Cambricon, Inc. All rights reserved
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- *************************************************************************/
- #include <algorithm>
- #include <memory>
- #include <string>
- #include <utility>
- #include <vector>
- #include "cnstream_frame_va.hpp"
- #include "cnstream_logging.hpp"
- #include "video_postproc.hpp"
- /**
- * @brief Video postprocessing for YOLOv3 neural network
- * The input frame of the model should keep aspect ratio.
- */
- class VideoPostprocYolov3 : public cnstream::VideoPostproc {
- public:
- /**
- * @brief User process. Postprocess on outputs of magicmind YOLOv3 neural network and fill data to frame.
- *
- * @param output_data: the raw output data from neural network
- * @param model_output: the raw neural network output data
- * @param model_info: model information, e.g., input/output number, shape and etc.
- *
- * @return return true if succeed
- */
- bool Execute(infer_server::InferData* output_data, const infer_server::ModelIO& model_output,
- const infer_server::ModelInfo& model_info) override;
- private:
- DECLARE_REFLEX_OBJECT_EX(VideoPostprocYolov3, cnstream::VideoPostproc);
- }; // class VideoPostprocYolov3
- IMPLEMENT_REFLEX_OBJECT_EX(VideoPostprocYolov3, cnstream::VideoPostproc);
- bool VideoPostprocYolov3::Execute(infer_server::InferData* output_data, const infer_server::ModelIO& model_output,
- const infer_server::ModelInfo& model_info) {
- LOGF_IF(DEMO, model_info.InputNum() != 1);
- LOGF_IF(DEMO, model_info.OutputNum() != 1);
- LOGF_IF(DEMO, model_output.buffers.size() != 1);
- cnstream::CNFrameInfoPtr frame = output_data->GetUserData<cnstream::CNFrameInfoPtr>();
- cnstream::CNInferObjsPtr objs_holder = frame->collection.Get<cnstream::CNInferObjsPtr>(cnstream::kCNInferObjsTag);
- cnstream::CNObjsVec &objs = objs_holder->objs_;
- const auto input_sp = model_info.InputShape(0);
- const int img_w = frame->collection.Get<cnstream::CNDataFramePtr>(cnstream::kCNDataFrameTag)->width;
- const int img_h = frame->collection.Get<cnstream::CNDataFramePtr>(cnstream::kCNDataFrameTag)->height;
- int w_idx = 2;
- int h_idx = 1;
- if (model_info.InputLayout(0).order == infer_server::DimOrder::NCHW) {
- w_idx = 3;
- h_idx = 2;
- }
- const int model_input_w = static_cast<int>(input_sp[w_idx]);
- const int model_input_h = static_cast<int>(input_sp[h_idx]);
- const float* net_output = reinterpret_cast<const float*>(model_output.buffers[0].Data());
- // scaling factors
- const float scaling_factors = std::min(1.0 * model_input_w / img_w, 1.0 * model_input_h / img_h);
- // The input frame of the model should keep aspect ratio.
- // If mlu resize and convert operator is used as preproc, parameter keep_aspect_ratio of Inferencer2 module
- // should be set to true in config json file.
- // If cpu preproc is used as preproc, please make sure keep aspect ratio in custom preproc.
- // Scaler does not support keep aspect ratio.
- // If the input frame does not keep aspect ratio, set scaled_w = model_input_w and scaled_h = model_input_h
- // scaled size
- const int scaled_w = scaling_factors * img_w;
- const int scaled_h = scaling_factors * img_h;
- // bounding boxes
- const int box_num = static_cast<int>(net_output[0]);
- int box_step = 7;
- auto range_0_1 = [](float num) { return std::max(.0f, std::min(1.0f, num)); };
- for (int box_idx = 0; box_idx < box_num; ++box_idx) {
- float left = range_0_1(net_output[64 + box_idx * box_step + 3]);
- float right = range_0_1(net_output[64 + box_idx * box_step + 5]);
- float top = range_0_1(net_output[64 + box_idx * box_step + 4]);
- float bottom = range_0_1(net_output[64 + box_idx * box_step + 6]);
- // rectify
- left = (left * model_input_w - (model_input_w - scaled_w) / 2) / scaled_w;
- right = (right * model_input_w - (model_input_w - scaled_w) / 2) / scaled_w;
- top = (top * model_input_h - (model_input_h - scaled_h) / 2) / scaled_h;
- bottom = (bottom * model_input_h - (model_input_h - scaled_h) / 2) / scaled_h;
- left = std::max(0.0f, left);
- right = std::max(0.0f, right);
- top = std::max(0.0f, top);
- bottom = std::max(0.0f, bottom);
- auto obj = std::make_shared<cnstream::CNInferObject>();
- obj->id = std::to_string(static_cast<int>(net_output[64 + box_idx * box_step + 1]));
- obj->score = net_output[64 + box_idx * box_step + 2];
- obj->bbox.x = left;
- obj->bbox.y = top;
- obj->bbox.w = std::min(1.0f - obj->bbox.x, right - left);
- obj->bbox.h = std::min(1.0f - obj->bbox.y, bottom - top);
- if (obj->bbox.h <= 0 || obj->bbox.w <= 0 || (obj->score < threshold_ && threshold_ > 0)) continue;
- std::lock_guard<std::mutex> objs_mutex(objs_holder->mutex_);
- objs.push_back(obj);
- }
- return true;
- }
|