postprocess_yolov5.cpp 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. /*************************************************************************
  2. * Copyright (C) [2021] by Cambricon, Inc. All rights reserved
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * The above copyright notice and this permission notice shall be included in
  11. * all copies or substantial portions of the Software.
  12. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  15. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  16. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  17. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  18. * THE SOFTWARE.
  19. *************************************************************************/
  20. #include <algorithm>
  21. #include <cmath>
  22. #include <memory>
  23. #include <mutex>
  24. #include <vector>
  25. #include "cnstream_frame_va.hpp"
  26. #include "postproc.hpp"
  27. #include "cnstream_logging.hpp"
  28. static auto range_0_1 = [](float num) { return std::max(.0f, std::min(1.0f, num)); };
  29. /**
  30. * @brief Postprocessing for YOLOv5 neural network
  31. * The input frame of the model should keep aspect ratio.
  32. */
  33. class PostprocYolov5 : public cnstream::Postproc {
  34. public:
  35. int Execute(const std::vector<float*>& net_outputs, const std::shared_ptr<edk::ModelLoader>& model,
  36. const std::shared_ptr<cnstream::CNFrameInfo>& package) {
  37. LOGF_IF(DEMO, model->InputNum() != 1);
  38. LOGF_IF(DEMO, model->OutputNum() != 1);
  39. LOGF_IF(DEMO, net_outputs.size() != 1);
  40. auto input_shape = model->InputShape(0);
  41. cnstream::CNDataFramePtr frame = package->collection.Get<cnstream::CNDataFramePtr>(cnstream::kCNDataFrameTag);
  42. const int img_w = frame->width;
  43. const int img_h = frame->height;
  44. const int model_input_w = static_cast<int>(input_shape.W());
  45. const int model_input_h = static_cast<int>(input_shape.H());
  46. const float* net_output = net_outputs[0];
  47. // scaling factors
  48. const float scaling_factors = std::min(1.0 * model_input_w / img_w, 1.0 * model_input_h / img_h);
  49. // The input frame of the model should keep aspect ratio.
  50. // If mlu resize and convert operator is used as preproc, parameter keep_aspect_ratio of Inferencer module
  51. // should be set to true in config json file.
  52. // If cpu preproc is used as preproc, please make sure keep aspect ratio in custom preproc.
  53. // Scaler does not support keep aspect ratio.
  54. // If the input frame does not keep aspect ratio, set scaled_w = model_input_w and scaled_h = model_input_h
  55. // scaled size
  56. const int scaled_w = scaling_factors * img_w;
  57. const int scaled_h = scaling_factors * img_h;
  58. // bboxes
  59. const int box_num = static_cast<int>(net_output[0]);
  60. int box_step = 7;
  61. auto range_0_1 = [](float num) { return std::max(.0f, std::min(1.0f, num)); };
  62. cnstream::CNInferObjsPtr objs_holder =
  63. package->collection.Get<cnstream::CNInferObjsPtr>(cnstream::kCNInferObjsTag);
  64. cnstream::CNObjsVec &objs = objs_holder->objs_;
  65. for (int box_idx = 0; box_idx < box_num; ++box_idx) {
  66. float left = net_output[64 + box_idx * box_step + 3];
  67. float right = net_output[64 + box_idx * box_step + 5];
  68. float top = net_output[64 + box_idx * box_step + 4];
  69. float bottom = net_output[64 + box_idx * box_step + 6];
  70. // rectify
  71. left = (left - (model_input_w - scaled_w) / 2) / scaled_w;
  72. right = (right - (model_input_w - scaled_w) / 2) / scaled_w;
  73. top = (top - (model_input_h - scaled_h) / 2) / scaled_h;
  74. bottom = (bottom - (model_input_h - scaled_h) / 2) / scaled_h;
  75. left = range_0_1(left);
  76. right = range_0_1(right);
  77. top = range_0_1(top);
  78. bottom = range_0_1(bottom);
  79. auto obj = std::make_shared<cnstream::CNInferObject>();
  80. obj->id = std::to_string(static_cast<int>(net_output[64 + box_idx * box_step + 1]));
  81. obj->score = net_output[64 + box_idx * box_step + 2];
  82. obj->bbox.x = left;
  83. obj->bbox.y = top;
  84. obj->bbox.w = std::min(1.0f - obj->bbox.x, right - left);
  85. obj->bbox.h = std::min(1.0f - obj->bbox.y, bottom - top);
  86. if (obj->bbox.h <= 0 || obj->bbox.w <= 0 || (obj->score < threshold_ && threshold_ > 0)) continue;
  87. std::lock_guard<std::mutex> objs_mutex(objs_holder->mutex_);
  88. objs.push_back(obj);
  89. }
  90. return 0;
  91. }
  92. private:
  93. DECLARE_REFLEX_OBJECT_EX(PostprocYolov5, cnstream::Postproc);
  94. }; // class PostprocessYolov5
  95. IMPLEMENT_REFLEX_OBJECT_EX(PostprocYolov5, cnstream::Postproc);