123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- /*************************************************************************
- * Copyright (C) [2019] by Cambricon, Inc. All rights reserved
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- *************************************************************************/
- #include "cnpostproc.h"
- #include <algorithm> // sort
- #include <cstring> // memset
- #include <list>
- #include <string>
- #include <utility>
- #include <vector>
- #include "cxxutil/log.h"
- using std::pair;
- using std::vector;
- using std::to_string;
- namespace edk {
- #define CLIP(x) ((x) < 0 ? 0 : ((x) > 1 ? 1 : (x)))
- void CnPostproc::set_threshold(const float threshold) { threshold_ = threshold; }
- vector<DetectObject> CnPostproc::Execute(const vector<pair<float*, uint64_t>>& net_outputs) {
- return Postproc(net_outputs);
- }
- vector<DetectObject> ClassificationPostproc::Postproc(const vector<pair<float*, uint64_t>>& net_outputs) {
- if (net_outputs.size() != 1) {
- LOGW(SAMPLES) << "Classification neuron network only has one output but get " + to_string(net_outputs.size());
- }
- float* data = net_outputs[0].first;
- uint64_t len = net_outputs[0].second;
- std::list<DetectObject> objs;
- for (decltype(len) i = 0; i < len; ++i) {
- if (data[i] < threshold_) continue;
- DetectObject obj;
- memset(&obj.bbox, 0, sizeof(BoundingBox));
- obj.label = i;
- obj.score = data[i];
- objs.emplace_back(std::move(obj));
- }
- objs.sort([](const DetectObject& a, const DetectObject& b) { return a.score > b.score; });
- return std::vector<DetectObject>(objs.begin(), objs.end());
- }
- vector<DetectObject> SsdPostproc::Postproc(const vector<pair<float*, uint64_t>>& net_outputs) {
- if (net_outputs.size() != 1) {
- LOGW(SAMPLES) << "Ssd neuron network only has one output, but get " + to_string(net_outputs.size());
- }
- vector<DetectObject> objs;
- float* data = net_outputs[0].first;
- // auto len = net_outputs[0].second;
- float box_num = data[0]; // get box num by batch index
- data += 64; // skip box num of all batch
- for (decltype(box_num) bi = 0; bi < box_num; ++bi) {
- DetectObject obj;
- if (data[1] == 0) continue;
- obj.label = data[1] - 1;
- obj.score = data[2];
- if (threshold_ > 0 && obj.score < threshold_) continue;
- obj.bbox.x = CLIP(data[3]);
- obj.bbox.y = CLIP(data[4]);
- obj.bbox.width = CLIP(data[5]) - obj.bbox.x;
- obj.bbox.height = CLIP(data[6]) - obj.bbox.y;
- objs.push_back(obj);
- data += 7;
- }
- return objs;
- }
- namespace detail {
- template <typename dtype>
- struct Clip {
- Clip(dtype _down, dtype _up) : down(_down), up(_up) {}
- inline dtype operator()(dtype val) {
- return std::min(up, std::max(down, val));
- }
- dtype down;
- dtype up;
- };
- } // namespace detail
- detail::Clip<float> Clip0_1_float(0, 1);
- vector<DetectObject> Yolov3Postproc::Postproc(const vector<pair<float*, uint64_t>>& net_outputs) {
- vector<DetectObject> objs;
- float* data = net_outputs[0].first;
- uint64_t len = net_outputs[0].second;
- constexpr int box_step = 7;
- const int box_num = static_cast<int>(data[0]);
- CHECK(SAMPLES, static_cast<uint64_t>(64 + box_num * box_step) <= len);
- for (int bi = 0; bi < box_num; ++bi) {
- DetectObject obj;
- obj.label = static_cast<int>(data[64 + bi * box_step + 1]);
- obj.score = data[64 + bi * box_step + 2];
- if (obj.label == 0) continue;
- if (threshold_ > 0 && obj.score < threshold_) continue;
- obj.bbox.x = Clip0_1_float(data[64 + bi * box_step + 3]);
- obj.bbox.y = Clip0_1_float(data[64 + bi * box_step + 4]);
- obj.bbox.width = Clip0_1_float(data[64 + bi * box_step + 5]) - obj.bbox.x;
- obj.bbox.height = Clip0_1_float(data[64 + bi * box_step + 6]) - obj.bbox.y;
- obj.bbox.x = (obj.bbox.x - padl_ratio_) / (1 - padl_ratio_ - padr_ratio_);
- obj.bbox.y = (obj.bbox.y - padt_ratio_) / (1 - padb_ratio_ - padt_ratio_);
- obj.bbox.width /= (1 - padl_ratio_ - padr_ratio_);
- obj.bbox.height /= (1 - padb_ratio_ - padt_ratio_);
- obj.track_id = -1;
- if (obj.bbox.width <= 0) continue;
- if (obj.bbox.height <= 0) continue;
- objs.push_back(obj);
- }
- return objs;
- }
- } // namespace edk
|